These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22744685)

  • 1. A holistic water balance of Austria - how does the quantitative proportion of urban water requirements relate to other users?
    Vanham D
    Water Sci Technol; 2012; 66(3):549-55. PubMed ID: 22744685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle water consumption and withdrawal requirements of ethanol from corn grain and residues.
    Mishra GS; Yeh S
    Environ Sci Technol; 2011 May; 45(10):4563-9. PubMed ID: 21520900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Water Footprint of Diets: A Global Systematic Review and Meta-analysis.
    Harris F; Moss C; Joy EJM; Quinn R; Scheelbeek PFD; Dangour AD; Green R
    Adv Nutr; 2020 Mar; 11(2):375-386. PubMed ID: 31756252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Urban water recycling.
    Asano T
    Water Sci Technol; 2005; 51(8):83-9. PubMed ID: 16007932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life cycle implications of urban green infrastructure.
    Spatari S; Yu Z; Montalto FA
    Environ Pollut; 2011; 159(8-9):2174-9. PubMed ID: 21330022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The water footprint of humanity.
    Hoekstra AY; Mekonnen MM
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3232-7. PubMed ID: 22331890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The water use of Indian diets and socio-demographic factors related to dietary blue water footprint.
    Harris F; Green RF; Joy EJ; Kayatz B; Haines A; Dangour AD
    Sci Total Environ; 2017 Jun; 587-588():128-136. PubMed ID: 28215793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China.
    Ye Q; Li Y; Zhuo L; Zhang W; Xiong W; Wang C; Wang P
    Water Res; 2018 Feb; 129():264-276. PubMed ID: 29156391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the urban water balance: the Urban Water Flow Model and its application in Cyprus.
    Charalambous K; Bruggeman A; Lange MA
    Water Sci Technol; 2012; 66(3):635-43. PubMed ID: 22744696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reclaimed municipal wastewater--a potential water resource in China.
    He P; Phan L; Gu G; Hervouet G
    Water Sci Technol; 2001; 43(10):51-8. PubMed ID: 11436803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applying the input-output method to account for water footprint and virtual water trade in the Haihe River basin in China.
    Zhao X; Yang H; Yang Z; Chen B; Qin Y
    Environ Sci Technol; 2010 Dec; 44(23):9150-6. PubMed ID: 20945890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological network analysis of an urban water metabolic system: model development, and a case study for Beijing.
    Zhang Y; Yang Z; Fath BD
    Sci Total Environ; 2010 Sep; 408(20):4702-11. PubMed ID: 20621333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new approach to assessing the water footprint of wine: an Italian case study.
    Lamastra L; Suciu NA; Novelli E; Trevisan M
    Sci Total Environ; 2014 Aug; 490():748-56. PubMed ID: 24908644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of crop production, trade, and consumption from the perspective of water resources: a case study of the Hetao irrigation district, China, for 1960-2010.
    Liu J; Sun S; Wu P; Wang Y; Zhao X
    Sci Total Environ; 2015 Feb; 505():1174-81. PubMed ID: 25461115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Workshop 7 (synthesis): trade-offs in water for food and environmental security--urban/agricultural trade-off.
    Rahman AU; Kadi MA; Rockström J
    Water Sci Technol; 2002; 45(8):191-3. PubMed ID: 12019821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internal (blue) water footprint of municipal consumption: a case study for Turkey.
    Boyacıoğlu H
    Environ Monit Assess; 2018 Jun; 190(7):403. PubMed ID: 29904799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The water footprint of Austria for different diets.
    Vanham D
    Water Sci Technol; 2013; 67(4):824-30. PubMed ID: 23306261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Towards an urban world].
    Profamilia; 1991 Dec; 7(18):28-30. PubMed ID: 12284750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaotic phenomenon and the maximum predictable time scale of observation series of urban hourly water consumption.
    Liu JQ; Zhang TQ; Yu SK
    J Zhejiang Univ Sci; 2004 Sep; 5(9):1053-9. PubMed ID: 15322999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urban food consumption and associated water resources: The example of Dutch cities.
    Vanham D; Mak TN; Gawlik BM
    Sci Total Environ; 2016 Sep; 565():232-239. PubMed ID: 27173841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.