These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22744747)

  • 1. Potential-modulated fluorescence spectroscopy of zwitterionic and dicationic membrane-potential-sensitive dyes at the 1,2-dichloroethane/water interface.
    Osakai T; Yoshimura T; Kaneko D; Nagatani H; Son SH; Yamagishi Y; Yamada K
    Anal Bioanal Chem; 2012 Aug; 404(3):785-92. PubMed ID: 22744747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential-modulated fluorescence spectroscopy of the membrane potential-sensitive dye di-4-ANEPPS at the 1,2-dichloroethane/water interface.
    Osakai T; Sawada J; Nagatani H
    Anal Bioanal Chem; 2009 Oct; 395(4):1055-61. PubMed ID: 19588129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined use of two membrane-potential-sensitive dyes for determination of the Galvani potential difference across a biomimetic oil/water interface.
    Yoshimura T; Nagatani H; Osakai T
    Anal Bioanal Chem; 2014 May; 406(14):3407-14. PubMed ID: 24687435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial behavior of sulforhodamine 101 at the polarized water/1,2-dichloroethane interface studied by spectroelectrochemical techniques.
    Nagatani H; Suzuki S; Fermín DJ; Girault HH; Nakatani K
    Anal Bioanal Chem; 2006 Oct; 386(3):633-8. PubMed ID: 16802124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encapsulation of anilinonaphthalenesulfonates in carboxylate-terminated PAMAM dendrimer at the polarized water|1,2-dichloroethane interface.
    Nagatani H; Sakamoto T; Torikai T; Sagara T
    Langmuir; 2010 Nov; 26(22):17686-94. PubMed ID: 20939496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of voltage-sensitive fluorescence dyes for monitoring neuronal activity in the embryonic central nervous system.
    Habib-E-Rasul Mullah S; Komuro R; Yan P; Hayashi S; Inaji M; Momose-Sato Y; Loew LM; Sato K
    J Membr Biol; 2013 Sep; 246(9):679-88. PubMed ID: 23975337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the Electrostatic Potential of Oil-in-Water Emulsion Droplets by Combined Use of Two Membrane Potential-Sensitive Dyes.
    Iwata T; Nagatani H; Osakai T
    Anal Sci; 2017; 33(7):813-819. PubMed ID: 28690259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Spectral study of voltage sensitive dye di-4-ANEPPS].
    Xu ZH; Zhang ZX; Wang J; Zhang H; Li Z; Jin YS; Ding HY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jul; 27(7):1359-62. PubMed ID: 17944414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved total internal reflection fluorescence spectroscopy. Part I. Photophysics of Coumarin 343 at liquid/liquid interface.
    Pant D; Girault HH
    Phys Chem Chem Phys; 2005 Oct; 7(19):3457-63. PubMed ID: 16273146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Analysis of Ion Association between Dendrigraft Poly-l-lysine and 8-Anilino-1-naphthalenesulfonate at Liquid|Liquid Interfaces.
    Nagatani H; Fujisawa M; Imura H
    Langmuir; 2018 Mar; 34(10):3237-3243. PubMed ID: 29457910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved fluorescence investigations of the interaction of the voltage-sensitive probe RH421 with lipid membranes and proteins.
    Visser NV; van Hoek A; Visser AJ; Frank J; Apell HJ; Clarke RJ
    Biochemistry; 1995 Sep; 34(37):11777-84. PubMed ID: 7547910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic investigations of the potential-sensitive membrane probe RH421.
    Clarke RJ; Schrimpf P; Schöneich M
    Biochim Biophys Acta; 1992 Nov; 1112(1):142-52. PubMed ID: 1329964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical detection of membrane dipole potential: avoidance of fluidity and dye-induced effects.
    Clarke RJ; Kane DJ
    Biochim Biophys Acta; 1997 Jan; 1323(2):223-39. PubMed ID: 9042345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of excitation and emission ratiometric fluorescence methods for quantifying the membrane dipole potential.
    Vitha MF; Clarke RJ
    Biochim Biophys Acta; 2007 Jan; 1768(1):107-14. PubMed ID: 16904627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectra of voltage-sensitive fluorescence of styryl-dye in neuron membrane.
    Fromherz P; Lambacher A
    Biochim Biophys Acta; 1991 Sep; 1068(2):149-56. PubMed ID: 1911828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential.
    Gross E; Bedlack RS; Loew LM
    Biophys J; 1994 Jul; 67(1):208-16. PubMed ID: 7918989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientational polarisability of lipid membrane surfaces.
    Le Goff G; Vitha MF; Clarke RJ
    Biochim Biophys Acta; 2007 Mar; 1768(3):562-70. PubMed ID: 17178101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage sensitivity of the fluorescent probe RH421 in a model membrane system.
    Clarke RJ; Zouni A; Holzwarth JF
    Biophys J; 1995 Apr; 68(4):1406-15. PubMed ID: 7787026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of asymmetric surface potentials on the intramembrane electric field measured with voltage-sensitive dyes.
    Xu C; Loew LM
    Biophys J; 2003 Apr; 84(4):2768-80. PubMed ID: 12668484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 2,7-carbazole-based dicationic salt for fluorescence detection of nucleic acids and two-photon fluorescence imaging of RNA in nucleoli and cytoplasm.
    Liu X; Sun Y; Zhang Y; Miao F; Wang G; Zhao H; Yu X; Liu H; Wong WY
    Org Biomol Chem; 2011 May; 9(10):3615-8. PubMed ID: 21431187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.