BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22745036)

  • 1. Non-water-suppressed proton MR spectroscopy improves spectral quality in the human spinal cord.
    Hock A; MacMillan EL; Fuchs A; Kreis R; Boesiger P; Kollias SS; Henning A
    Magn Reson Med; 2013 May; 69(5):1253-60. PubMed ID: 22745036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity-encoded (SENSE) proton echo-planar spectroscopic imaging (PEPSI) in the human brain.
    Lin FH; Tsai SY; Otazo R; Caprihan A; Wald LL; Belliveau JW; Posse S
    Magn Reson Med; 2007 Feb; 57(2):249-57. PubMed ID: 17260356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton magnetic resonance spectroscopy of normal human brain and glioma: a quantitative in vivo study.
    Tong ZY; Toshiaki Y; Wang YJ
    Chin Med J (Engl); 2005 Aug; 118(15):1251-7. PubMed ID: 16117877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interindividual, repositioning, and time-of-day effects on single voxel proton MR spectroscopy of the anterior cingulate cortex.
    Soreni N; Noseworthy MD; Konyer NB; Pullenayegum E; Schachar R
    J Magn Reson Imaging; 2010 Aug; 32(2):276-82. PubMed ID: 20677251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative proton magnetic resonance spectroscopy of the cervical spinal cord.
    Cooke FJ; Blamire AM; Manners DN; Styles P; Rajagopalan B
    Magn Reson Med; 2004 Jun; 51(6):1122-8. PubMed ID: 15170831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short TE in vivo (1)H MR spectroscopic imaging at 1.5 T: acquisition and automated spectral analysis.
    Soher BJ; Vermathen P; Schuff N; Wiedermann D; Meyerhoff DJ; Weiner MW; Maudsley AA
    Magn Reson Imaging; 2000 Nov; 18(9):1159-65. PubMed ID: 11118771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal inter- and intra-individual human brain metabolic quantification over 3 years with proton MR spectroscopy at 3 T.
    Kirov II; George IC; Jayawickrama N; Babb JS; Perry NN; Gonen O
    Magn Reson Med; 2012 Jan; 67(1):27-33. PubMed ID: 21656555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-water-suppressed short-echo-time magnetic resonance spectroscopic imaging using a concentric ring k-space trajectory.
    Emir UE; Burns B; Chiew M; Jezzard P; Thomas MA
    NMR Biomed; 2017 Jul; 30(7):. PubMed ID: 28272792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic information from the human fetal brain obtained with proton magnetic resonance spectroscopy.
    Kok RD; van den Bergh AJ; Heerschap A; Nijland R; van den Berg PP
    Am J Obstet Gynecol; 2001 Nov; 185(5):1011-5. PubMed ID: 11717623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MR spectroscopy of cervical spinal cord in patients with multiple sclerosis.
    Kendi AT; Tan FU; Kendi M; Yilmaz S; Huvaj S; Tellioğlu S
    Neuroradiology; 2004 Sep; 46(9):764-9. PubMed ID: 15258708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of coupled 1H metabolite resonances at long TE.
    Soher BJ; Pattany PM; Matson GB; Maudsley AA
    Magn Reson Med; 2005 Jun; 53(6):1283-7. PubMed ID: 15906305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrocardiogram-triggered, higher order, projection-based B₀ shimming allows for fast and reproducible shim convergence in spinal cord ¹H MRS.
    Hock A; Fuchs A; Boesiger P; Kollias SS; Henning A
    NMR Biomed; 2013 Mar; 26(3):329-35. PubMed ID: 23065738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multisection proton MR spectroscopic imaging of the brain.
    Duyn JH; Gillen J; Sobering G; van Zijl PC; Moonen CT
    Radiology; 1993 Jul; 188(1):277-82. PubMed ID: 8511313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated proton echo planar spectroscopic imaging (PEPSI) using GRAPPA with a 32-channel phased-array coil.
    Tsai SY; Otazo R; Posse S; Lin YR; Chung HW; Wald LL; Wiggins GC; Lin FH
    Magn Reson Med; 2008 May; 59(5):989-98. PubMed ID: 18429025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo quantification of the metabolites in normal brain and brain tumors by proton MR spectroscopy using water as an internal standard.
    Tong Z; Yamaki T; Harada K; Houkin K
    Magn Reson Imaging; 2004 Sep; 22(7):1017-24. PubMed ID: 15288143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pitfalls and advantages of different strategies for the absolute quantification of N-acetyl aspartate, creatine and choline in white and grey matter by 1H-MRS.
    Malucelli E; Manners DN; Testa C; Tonon C; Lodi R; Barbiroli B; Iotti S
    NMR Biomed; 2009 Dec; 22(10):1003-13. PubMed ID: 19504521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton magnetic resonance spectroscopy in school-aged autistic children.
    Vasconcelos MM; Brito AR; Domingues RC; da Cruz LC; Gasparetto EL; Werner J; Gonçalves JP
    J Neuroimaging; 2008 Jul; 18(3):288-95. PubMed ID: 18304036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of non-water-suppressed MR spectra with correction for motion-induced signal reduction.
    Lin JM; Tsai SY; Liu HS; Chung HW; Mulkern RV; Cheng CM; Yeh TC; Chen NK
    Magn Reson Med; 2009 Dec; 62(6):1394-403. PubMed ID: 19780180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative magnetic resonance spectroscopy in the entire human cervical spinal cord and beyond at 3T.
    Henning A; Schär M; Kollias SS; Boesiger P; Dydak U
    Magn Reson Med; 2008 Jun; 59(6):1250-8. PubMed ID: 18421679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reproducibility of short echo time proton magnetic resonance spectroscopy using point-resolved spatially localized spectroscopy sequence in normal human brains.
    Hoshino Y; Yoshikawa K; Inoue Y; Asai S; Nakamura T; Ogino T; Umeda M; Iwamoto A
    Radiat Med; 1999; 17(2):115-20. PubMed ID: 10399778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.