BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22745057)

  • 1. A probabilistic method for species sensitivity distributions taking into account the inherent uncertainty and variability of effects to estimate environmental risk.
    Gottschalk F; Nowack B
    Integr Environ Assess Manag; 2013 Jan; 9(1):79-86. PubMed ID: 22745057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic risk evaluation for triclosan in surface water, sediments, and aquatic biota tissues.
    Lyndall J; Fuchsman P; Bock M; Barber T; Lauren D; Leigh K; Perruchon E; Capdevielle M
    Integr Environ Assess Manag; 2010 Jul; 6(3):419-40. PubMed ID: 20821705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models.
    Awkerman JA; Raimondo S; Jackson CR; Barron MG
    Environ Toxicol Chem; 2014 Mar; 33(3):688-95. PubMed ID: 24214839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic Consideration of Parameter Uncertainty and Variability in Probabilistic Species Sensitivity Distributions.
    Wigger H; Kawecki D; Nowack B; Adam V
    Integr Environ Assess Manag; 2020 Mar; 16(2):211-222. PubMed ID: 31535755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Future needs and recommendations in the development of species sensitivity distributions: Estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures.
    Belanger S; Barron M; Craig P; Dyer S; Galay-Burgos M; Hamer M; Marshall S; Posthuma L; Raimondo S; Whitehouse P
    Integr Environ Assess Manag; 2017 Jul; 13(4):664-674. PubMed ID: 27531323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bayesian approach for determining the no effect concentration and hazardous concentration in ecotoxicology.
    Fox DR
    Ecotoxicol Environ Saf; 2010 Feb; 73(2):123-31. PubMed ID: 19836077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of in silico development of aquatic toxicity species sensitivity distributions.
    Barron MG; Jackson CR; Awkerman JA
    Aquat Toxicol; 2012 Jul; 116-117():1-7. PubMed ID: 22459408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the application of loss functions in determining assessment factors for ecological risk.
    Hickey GL; Craig PS; Hart A
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):293-300. PubMed ID: 18691758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competing statistical methods for the fitting of normal species sensitivity distributions: recommendations for practitioners.
    Hickey GL; Craig PS
    Risk Anal; 2012 Jul; 32(7):1232-43. PubMed ID: 22050459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A probabilistic effect assessment model for hazardous substances at the workplace.
    Schneider K; Schuhmacher-Wolz U; Hassauer M; Darschnik S; Elmshäuser E; Mosbach-Schulz O
    Regul Toxicol Pharmacol; 2006 Mar; 44(2):172-81. PubMed ID: 16356615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving ecological risk assessment by including bioavailability into species sensitivity distributions: an example for plants exposed to nickel in soil.
    Semenzin E; Temminghoff EJ; Marcomini A
    Environ Pollut; 2007 Jul; 148(2):642-7. PubMed ID: 17240027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and application of the SSD approach in scientific case studies for ecological risk assessment.
    Del Signore A; Hendriks AJ; Lenders HJ; Leuven RS; Breure AM
    Environ Toxicol Chem; 2016 Sep; 35(9):2149-61. PubMed ID: 27144499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of probabilistic exposure assessment and probabilistic hazard characterization.
    van der Voet H; Slob W
    Risk Anal; 2007 Apr; 27(2):351-71. PubMed ID: 17511703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical modelling of species sensitivity distribution: development and application to the case of diatoms exposed to several herbicides.
    Kon Kam King G; Larras F; Charles S; Delignette-Muller ML
    Ecotoxicol Environ Saf; 2015 Apr; 114():212-21. PubMed ID: 25656423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of aquatic toxicity benchmarks for oil products using species sensitivity distributions.
    Barron MG; Hemmer MJ; Jackson CR
    Integr Environ Assess Manag; 2013 Oct; 9(4):610-5. PubMed ID: 23554001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relevance of risk predictions derived from a chronic species sensitivity distribution with cadmium to aquatic populations and ecosystems.
    Mebane CA
    Risk Anal; 2010 Feb; 30(2):203-23. PubMed ID: 19659451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the use of hierarchical probabilistic models for characterizing and managing uncertainty in risk/safety assessment.
    Kodell RL; Chen JJ
    Risk Anal; 2007 Apr; 27(2):433-7. PubMed ID: 17511709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combined Monte Carlo and possibilistic approach to uncertainty propagation in event tree analysis.
    Baraldi P; Zio E
    Risk Anal; 2008 Oct; 28(5):1309-26. PubMed ID: 18631304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity analysis of a two-dimensional quantitative microbiological risk assessment: keeping variability and uncertainty separated.
    Busschaert P; Geeraerd AH; Uyttendaele M; Van Impe JF
    Risk Anal; 2011 Aug; 31(8):1295-307. PubMed ID: 21418082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of variability and uncertainty for censored data sets and application to air toxic emission factors.
    Zhao Y; Frey HC
    Risk Anal; 2004 Aug; 24(4):1019-34. PubMed ID: 15357825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.