These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22745057)

  • 21. Species sensitivity distribution for pentachlorophenol to aquatic organisms based on interval ecotoxicological data.
    Zhao J; Zhang R
    Ecotoxicol Environ Saf; 2017 Nov; 145():193-199. PubMed ID: 28734222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Which distribution to choose for deriving a species sensitivity distribution? Implications from analysis of acute and chronic ecotoxicity data.
    Yanagihara M; Hiki K; Iwasaki Y
    Ecotoxicol Environ Saf; 2024 Jun; 278():116379. PubMed ID: 38714082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uncertainty distribution associated with estimating a proportion in microbial risk assessment.
    Miconnet N; Cornu M; Beaufort A; Rosso L; Denis JB
    Risk Anal; 2005 Feb; 25(1):39-48. PubMed ID: 15787755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Species Sensitivity Distribution estimation from uncertain (QSAR-based) effects data.
    Aldenberg T; Rorije E
    Altern Lab Anim; 2013 Mar; 41(1):19-31. PubMed ID: 23614542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Environmental benchmarks based on ecotoxicological assessment with planktonic species might not adequately protect benthic assemblages in lotic systems.
    Vidal T; Santos JI; Queirós L; Ré A; Abrantes N; Gonçalves FJM; Pereira JL
    Sci Total Environ; 2019 Jun; 668():1289-1297. PubMed ID: 31018468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probabilistic methods for addressing uncertainty and variability in biological models: application to a toxicokinetic model.
    Banks HT; Potter LK
    Math Biosci; 2004 Dec; 192(2):193-225. PubMed ID: 15627493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects assessment: boron compounds in the aquatic environment.
    Schoderboeck L; Mühlegger S; Losert A; Gausterer C; Hornek R
    Chemosphere; 2011 Jan; 82(3):483-7. PubMed ID: 21055789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental risk assessment of zinc in European freshwaters: a critical appraisal.
    Van Sprang PA; Verdonck FA; Van Assche F; Regoli L; De Schamphelaere KA
    Sci Total Environ; 2009 Oct; 407(20):5373-91. PubMed ID: 19631966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Forecasting risk along a river basin using a probabilistic and deterministic model for environmental risk assessment of effluents through ecotoxicological evaluation and GIS.
    Gutiérrez S; Fernandez C; Barata C; Tarazona JV
    Sci Total Environ; 2009 Dec; 408(2):294-303. PubMed ID: 19875154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deriving a water quality guideline for protection of aquatic communities exposed to triclosan in the Canadian environment.
    Hill KL; Breton RL; Manning GE; Teed RS; Capdevielle M; Slezak B
    Integr Environ Assess Manag; 2018 Jul; 14(4):437-441. PubMed ID: 29528192
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Species sensitivity distribution for chlorpyrifos to aquatic organisms: Model choice and sample size.
    Zhao J; Chen B
    Ecotoxicol Environ Saf; 2016 Mar; 125():161-9. PubMed ID: 26701839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of environmental risks from toxic and nontoxic stressors; a proposed concept for a risk-based management tool for offshore drilling discharges.
    Smit MG; Jak RG; Rye H; Frost TK; Singsaas I; Karman CC
    Integr Environ Assess Manag; 2008 Apr; 4(2):177-83. PubMed ID: 18232721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uncertain numbers and uncertainty in the selection of input distributions--consequences for a probabilistic risk assessment of contaminated land.
    Sander P; Bergbäck B; Oberg T
    Risk Anal; 2006 Oct; 26(5):1363-75. PubMed ID: 17054537
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advantages of model averaging of species sensitivity distributions used for regulating produced water discharges.
    Binet MT; Golding LA; Adams MS; Robertson T; Elsdon TS
    Integr Environ Assess Manag; 2024 Mar; 20(2):498-517. PubMed ID: 37466036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probabilistic dose-response modeling: case study using dichloromethane PBPK model results.
    Marino DJ; Starr TB
    Regul Toxicol Pharmacol; 2007 Dec; 49(3):285-300. PubMed ID: 17949874
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methods for estimating no-effect toxicity concentrations in ecotoxicology.
    Fisher R; Fox DR; Negri AP; van Dam J; Flores F; Koppel D
    Integr Environ Assess Manag; 2024 Jan; 20(1):279-293. PubMed ID: 37431758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incorporating linguistic, probabilistic, and possibilistic information in a risk-based approach for ranking contaminated sites.
    Zhang K; Achari G; Pei Y
    Integr Environ Assess Manag; 2010 Oct; 6(4):711-24. PubMed ID: 20872650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advancing Fifth Percentile Hazard Concentration Estimation Using Toxicity-Normalized Species Sensitivity Distributions.
    Dhond AK; Barron MG
    Environ Sci Technol; 2022 Dec; 56(23):17188-17196. PubMed ID: 36410104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulations in health risk assessment.
    Biesiada M
    Int J Occup Med Environ Health; 2001; 14(4):397-402. PubMed ID: 11885924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subsea release of oil from a riser: an ecological risk assessment.
    Nazir M; Khan F; Amyotte P; Sadiq R
    Risk Anal; 2008 Oct; 28(5):1173-96. PubMed ID: 18844861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.