These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 22745111)
21. Structural and functional models of the active site of zinc phosphotriesterase. Carlsson H; Haukka M; Nordlander E Inorg Chem; 2004 Sep; 43(18):5681-7. PubMed ID: 15332820 [TBL] [Abstract][Full Text] [Related]
22. Functional annotation and three-dimensional structure of Dr0930 from Deinococcus radiodurans, a close relative of phosphotriesterase in the amidohydrolase superfamily. Xiang DF; Kolb P; Fedorov AA; Meier MM; Fedorov LV; Nguyen TT; Sterner R; Almo SC; Shoichet BK; Raushel FM Biochemistry; 2009 Mar; 48(10):2237-47. PubMed ID: 19159332 [TBL] [Abstract][Full Text] [Related]
23. Three-dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate. Vanhooke JL; Benning MM; Raushel FM; Holden HM Biochemistry; 1996 May; 35(19):6020-5. PubMed ID: 8634243 [TBL] [Abstract][Full Text] [Related]
24. Phosphotriesterase variants with high methylphosphonatase activity and strong negative trade-off against phosphotriesters. Briseño-Roa L; Timperley CM; Griffiths AD; Fersht AR Protein Eng Des Sel; 2011 Jan; 24(1-2):151-9. PubMed ID: 21037279 [TBL] [Abstract][Full Text] [Related]
26. Zinc(II) tweezers containing artificial peptides mimicking the active site of phosphotriesterase: the catalyzed hydrolysis of the toxic organophosphate parathion. Ibrahim MM; Mersal GA J Inorg Biochem; 2010 Nov; 104(11):1195-204. PubMed ID: 20719392 [TBL] [Abstract][Full Text] [Related]
28. The effects of substrate orientation on the mechanism of a phosphotriesterase. Jackson CJ; Liu JW; Coote ML; Ollis DL Org Biomol Chem; 2005 Dec; 3(24):4343-50. PubMed ID: 16327895 [TBL] [Abstract][Full Text] [Related]
29. Directed evolution of phosphotriesterase from Pseudomonas diminuta for heterologous expression in Escherichia coli results in stabilization of the metal-free state. Roodveldt C; Tawfik DS Protein Eng Des Sel; 2005 Jan; 18(1):51-8. PubMed ID: 15790580 [TBL] [Abstract][Full Text] [Related]
30. Highest paraoxonase turnover rate found in a bacterial phosphotriesterase variant. Briseño-Roa L; Oliynyk Z; Timperley CM; Griffiths AD; Fersht AR Protein Eng Des Sel; 2011 Jan; 24(1-2):209-11. PubMed ID: 20650962 [TBL] [Abstract][Full Text] [Related]
31. Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source. McLoughlin SY; Jackson C; Liu JW; Ollis DL Appl Environ Microbiol; 2004 Jan; 70(1):404-12. PubMed ID: 14711669 [TBL] [Abstract][Full Text] [Related]
32. Activation of the binuclear metal center through formation of phosphotriesterase-inhibitor complexes. Samples CR; Raushel FM; DeRose VJ Biochemistry; 2007 Mar; 46(11):3435-42. PubMed ID: 17315951 [TBL] [Abstract][Full Text] [Related]
33. In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase. Jackson CJ; Foo JL; Kim HK; Carr PD; Liu JW; Salem G; Ollis DL J Mol Biol; 2008 Feb; 375(5):1189-96. PubMed ID: 18082180 [TBL] [Abstract][Full Text] [Related]
34. Theoretical modeling of the reaction mechanism of phosphate monoester hydrolysis in alkaline phosphatase. López-Canut V; Martí S; Bertrán J; Moliner V; Tuñón I J Phys Chem B; 2009 Jun; 113(22):7816-24. PubMed ID: 19425583 [TBL] [Abstract][Full Text] [Related]
35. Structure of diethyl phosphate bound to the binuclear metal center of phosphotriesterase. Kim J; Tsai PC; Chen SL; Himo F; Almo SC; Raushel FM Biochemistry; 2008 Sep; 47(36):9497-504. PubMed ID: 18702530 [TBL] [Abstract][Full Text] [Related]
36. Modification of near active site residues in organophosphorus hydrolase reduces metal stoichiometry and alters substrate specificity. diSioudi B; Grimsley JK; Lai K; Wild JR Biochemistry; 1999 Mar; 38(10):2866-72. PubMed ID: 10074338 [TBL] [Abstract][Full Text] [Related]
37. Conformational variability of organophosphorus hydrolase upon soman and paraoxon binding. Gomes DE; Lins RD; Pascutti PG; Lei C; Soares TA J Phys Chem B; 2011 Dec; 115(51):15389-98. PubMed ID: 22098575 [TBL] [Abstract][Full Text] [Related]
38. Hydrolysis of organophosphate esters: phosphotriesterase activity of metallo-beta-lactamase and its functional mimics. Tamilselvi A; Mugesh G Chemistry; 2010 Aug; 16(29):8878-86. PubMed ID: 20575118 [TBL] [Abstract][Full Text] [Related]
39. Zn2+-catalyzed methanolysis of phosphate triesters: a process for catalytic degradation of the organophosphorus pesticides paraoxon and fenitrothion. Desloges W; Neverov AA; Brown RS Inorg Chem; 2004 Oct; 43(21):6752-61. PubMed ID: 15476375 [TBL] [Abstract][Full Text] [Related]
40. Isostructural dinuclear phenoxo-/acetato-bridged manganese(II), cobalt(II), and zinc(II) complexes with labile sites: kinetics of transesterification of 2-hydroxypropyl-p-nitrophenylphosphate. Arora H; Barman SK; Lloret F; Mukherjee R Inorg Chem; 2012 May; 51(10):5539-53. PubMed ID: 22536852 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]