BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22745129)

  • 1. Shadows of an absent partner: ATP hydrolysis and phosphoenzyme turnover of the Spf1 (sensitivity to Pichia farinosa killer toxin) P5-ATPase.
    Corradi GR; de Tezanos Pinto F; Mazzitelli LR; Adamo HP
    J Biol Chem; 2012 Aug; 287(36):30477-84. PubMed ID: 22745129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of the Formation of the Spf1p Phosphoenzyme by Ca2.
    Corradi GR; Czysezon NA; Mazzitelli LR; Sarbia N; Adamo HP
    J Biol Chem; 2016 Apr; 291(14):7767-73. PubMed ID: 26858246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yeast p5 type ATPase, spf1, regulates manganese transport into the endoplasmic reticulum.
    Cohen Y; Megyeri M; Chen OC; Condomitti G; Riezman I; Loizides-Mangold U; Abdul-Sada A; Rimon N; Riezman H; Platt FM; Futerman AH; Schuldiner M
    PLoS One; 2013; 8(12):e85519. PubMed ID: 24392018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P-type ATPase spf1 mutants show a novel resistance mechanism for the killer toxin SMKT.
    Suzuki C; Shimma YI
    Mol Microbiol; 1999 May; 32(4):813-23. PubMed ID: 10361284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of metal ions on the Spf1p P5A-ATPase. High sensitivity to irreversible inhibition by zinc.
    Petrovich GD; Corradi GR; Adamo HP
    Arch Biochem Biophys; 2022 Dec; 732():109450. PubMed ID: 36328152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of the P5A-ATPase Spf1p phosphoenzyme by a Ca2+-dependent phosphatase.
    Corradi GR; Mazzitelli LR; Petrovich GD; Grenon P; Sørensen DM; Palmgren M; de Tezanos Pinto F; Adamo HP
    PLoS One; 2020; 15(4):e0232476. PubMed ID: 32353073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the soluble domain of the ABC7 type transporter Atm1.
    Chen CA; Cowan JA
    J Biol Chem; 2003 Dec; 278(52):52681-8. PubMed ID: 14514697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly exposed segment of the Spf1p P5A-ATPase near transmembrane M5 detected by limited proteolysis.
    Petrovich GD; Corradi GR; Pavan CH; Noli Truant S; Adamo HP
    PLoS One; 2021; 16(1):e0245679. PubMed ID: 33507968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The endoplasmic reticulum P5A-ATPase is a transmembrane helix dislocase.
    McKenna MJ; Sim SI; Ordureau A; Wei L; Harper JW; Shao S; Park E
    Science; 2020 Sep; 369(6511):. PubMed ID: 32973005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ATP hydrolysis cycle of the nucleotide-binding domain of the mitochondrial ATP-binding cassette transporter Mdl1p.
    Janas E; Hofacker M; Chen M; Gompf S; van der Does C; Tampé R
    J Biol Chem; 2003 Jul; 278(29):26862-9. PubMed ID: 12746444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Spf1p P5A-ATPase "arm-like" domain is not essential for ATP hydrolysis but its deletion impairs autophosphorylation.
    Grenon P; Corradi GR; Petrovich GD; Mazzitelli LR; Adamo HP
    Biochem Biophys Res Commun; 2021 Jul; 563():113-118. PubMed ID: 34087682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manganese selectivity of pmr1, the yeast secretory pathway ion pump, is defined by residue gln783 in transmembrane segment 6. Residue Asp778 is essential for cation transport.
    Mandal D; Woolf TB; Rao R
    J Biol Chem; 2000 Aug; 275(31):23933-8. PubMed ID: 10801856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards defining the substrate of orphan P5A-ATPases.
    Sørensen DM; Holen HW; Holemans T; Vangheluwe P; Palmgren MG
    Biochim Biophys Acta; 2015 Mar; 1850(3):524-35. PubMed ID: 24836520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunochemical and mutational analyses of P-type ATPase Spf1p involved in the yeast secretory pathway.
    Suzuki C
    Biosci Biotechnol Biochem; 2001 Nov; 65(11):2405-11. PubMed ID: 11791712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization and ATP-induced dimerization of the isolated ABC-domain of the haemolysin B transporter.
    Zaitseva J; Jenewein S; Wiedenmann A; Benabdelhak H; Holland IB; Schmitt L
    Biochemistry; 2005 Jul; 44(28):9680-90. PubMed ID: 16008353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of the phosphoenzyme intermediate of the yeast plasma membrane proton-translocating ATPase.
    Smith KE; Hammes GG
    J Biol Chem; 1988 Sep; 263(27):13774-8. PubMed ID: 2901418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lanthanum inhibits steady-state turnover of the sarcoplasmic reticulum calcium ATPase by replacing magnesium as the catalytic ion.
    Fujimori T; Jencks WP
    J Biol Chem; 1990 Sep; 265(27):16262-70. PubMed ID: 2144527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The P5A ATPase Spf1p is stimulated by phosphatidylinositol 4-phosphate and influences cellular sterol homeostasis.
    Sørensen DM; Holen HW; Pedersen JT; Martens HJ; Silvestro D; Stanchev LD; Costa SR; Günther Pomorski T; López-Marqués RL; Palmgren M
    Mol Biol Cell; 2019 Apr; 30(9):1069-1084. PubMed ID: 30785834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of metal bound to the substrate site on calcium release from the phosphoenzyme intermediate of sarcoplasmic reticulum ATPase.
    Wakabayashi S; Shigekawa M
    J Biol Chem; 1987 Aug; 262(24):11524-31. PubMed ID: 2957367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The P5-type ATPase Spf1 is required for development and virulence of the rice blast fungus Pyricularia oryzae.
    Qu Y; Wang J; Zhu X; Dong B; Liu X; Lu J; Lin F
    Curr Genet; 2020 Apr; 66(2):385-395. PubMed ID: 31471638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.