These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22745261)

  • 1. Reinventing personal glucose devices.
    Webster M; Kumar VS
    Clin Chem; 2012 Jul; 58(7):1163-5. PubMed ID: 22745261
    [No Abstract]   [Full Text] [Related]  

  • 2. Review: Aptamers in microfluidic chips.
    Xu Y; Yang X; Wang E
    Anal Chim Acta; 2010 Dec; 683(1):12-20. PubMed ID: 21094377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosensing of DNA oxidative damage: a model of using glucose meter for non-glucose biomarker detection.
    Zhu X; Sarwar M; Yue Q; Chen C; Li CZ
    Int J Nanomedicine; 2017; 12():979-987. PubMed ID: 28203077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aptamer-based microfluidic beads array sensor for simultaneous detection of multiple analytes employing multienzyme-linked nanoparticle amplification and quantum dots labels.
    Zhang H; Hu X; Fu X
    Biosens Bioelectron; 2014 Jul; 57():22-9. PubMed ID: 24534576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Microfluidic Love-Wave Biosensing Device for PSA Detection Based on an Aptamer Beacon Probe.
    Zhang F; Li S; Cao K; Wang P; Su Y; Zhu X; Wan Y
    Sensors (Basel); 2015 Jun; 15(6):13839-50. PubMed ID: 26110408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An aptamer-based paper microfluidic device for the colorimetric determination of cocaine.
    Wang L; Musile G; McCord BR
    Electrophoresis; 2018 Feb; 39(3):470-475. PubMed ID: 28834613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel micromachined silicon sensor for continuous glucose monitoring.
    Piechotta G; Albers J; Hintsche R
    Biosens Bioelectron; 2005 Nov; 21(5):802-8. PubMed ID: 16242621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets.
    Xiang Y; Lu Y
    Nat Chem; 2011 Jul; 3(9):697-703. PubMed ID: 21860458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of blood extraction system for health monitoring system.
    Tsuchiya K; Nakanishi N; Uetsuji Y; Nakamachi E
    Biomed Microdevices; 2005 Dec; 7(4):347-53. PubMed ID: 16404513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of protein biomarker using a blood glucose meter.
    Lan T; Xiang Y; Lu Y
    Methods Mol Biol; 2015; 1256():99-109. PubMed ID: 25626534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of DNA aptamers against myoglobin using a positive and negative selection units integrated microfluidic chip and its biosensing application.
    Wang Q; Liu W; Xing Y; Yang X; Wang K; Jiang R; Wang P; Zhao Q
    Anal Chem; 2014 Jul; 86(13):6572-9. PubMed ID: 24914856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Portable and quantitative point-of-care monitoring of Escherichia coli O157:H7 using a personal glucose meter based on immunochromatographic assay.
    Huang H; Zhao G; Dou W
    Biosens Bioelectron; 2018 Jun; 107():266-271. PubMed ID: 29477883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic detection system based upon a surface immobilized biobarcode assay.
    Goluch ED; Stoeva SI; Lee JS; Shaikh KA; Mirkin CA; Liu C
    Biosens Bioelectron; 2009 Apr; 24(8):2397-403. PubMed ID: 19157846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using the Rubik's Cube to directly produce paper analytical devices for quantitative point-of-care aptamer-based assays.
    Fu H; Yang J; Guo L; Nie J; Yin Q; Zhang L; Zhang Y
    Biosens Bioelectron; 2017 Oct; 96():194-200. PubMed ID: 28499195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid biosensing tools for cancer biomarkers.
    Ranjan R; Esimbekova EN; Kratasyuk VA
    Biosens Bioelectron; 2017 Jan; 87():918-930. PubMed ID: 27664412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor.
    Swensen JS; Xiao Y; Ferguson BS; Lubin AA; Lai RY; Heeger AJ; Plaxco KW; Soh HT
    J Am Chem Soc; 2009 Apr; 131(12):4262-6. PubMed ID: 19271708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrarapid generation of femtoliter microfluidic droplets for single-molecule-counting immunoassays.
    Shim JU; Ranasinghe RT; Smith CA; Ibrahim SM; Hollfelder F; Huck WT; Klenerman D; Abell C
    ACS Nano; 2013 Jul; 7(7):5955-64. PubMed ID: 23805985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced graphene oxide/BiFeO
    Zhou Q; Lin Y; Zhang K; Li M; Tang D
    Biosens Bioelectron; 2018 Mar; 101():146-152. PubMed ID: 29065339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive point-of-care monitoring of cardiac biomarker myoglobin using aptamer and ubiquitous personal glucose meter.
    Wang Q; Liu F; Yang X; Wang K; Wang H; Deng X
    Biosens Bioelectron; 2015 Feb; 64():161-4. PubMed ID: 25216451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated microfluidic systems with an immunosensor modified with carbon nanotubes for detection of prostate specific antigen (PSA) in human serum samples.
    Panini NV; Messina GA; Salinas E; Fernández H; Raba J
    Biosens Bioelectron; 2008 Feb; 23(7):1145-51. PubMed ID: 18162392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.