These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 2274530)

  • 1. Effect of volatile anesthetics on segmental relaxation of cerebral arteries.
    Gintautas J; Gintautiene K; Pillalamarri ED; Doss NW; Chaudhry R; Berman S; Longmore W; Abadir AR
    Proc West Pharmacol Soc; 1990; 33():167-9. PubMed ID: 2274530
    [No Abstract]   [Full Text] [Related]  

  • 2. A comparison of the vasodilating effects of halothane and isoflurane on the isolated rabbit basilar artery with and without intact endothelium.
    Jensen NF; Todd MM; Kramer DJ; Leonard PA; Warner DS
    Anesthesiology; 1992 Apr; 76(4):624-34. PubMed ID: 1550288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action of various pharmacological agents on basilar and middle cerebral arteries.
    Lawson N; Gintautas J; Kraynack BJ; Havasi G
    Proc West Pharmacol Soc; 1982; 25():249-50. PubMed ID: 7122499
    [No Abstract]   [Full Text] [Related]  

  • 4. Cerebral vascular responses to anesthetics.
    Flynn N; Buljubasic N; Bosnjak ZJ; Kampine JP
    Adv Exp Med Biol; 1991; 301():237-46. PubMed ID: 1662464
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of K+ channel blockade with tetraethylammonium on anesthetic-induced relaxation in canine cerebral and coronary arteries.
    Marijic J; Buljubasïc N; Coughlan MG; Kampine JP; Bosnjak ZJ
    Anesthesiology; 1992 Nov; 77(5):948-55. PubMed ID: 1332551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Two types of relaxation responses mediated by cyclic GMP in cerebral arteries].
    Kanamaru K; Waga S; Kojima T; Fujimoto K
    No To Shinkei; 1989 Jun; 41(6):559-65. PubMed ID: 2553081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responsiveness of isolated cerebral arteries to various pharmacologic agents and to transmural electrical stimulation.
    Gintautas J; Kraynack BJ; Racz GB
    Proc West Pharmacol Soc; 1980; 23():63-7. PubMed ID: 7403167
    [No Abstract]   [Full Text] [Related]  

  • 8. [Effects of gamma-aminobutyric acid on isolated dog cerebral arteries].
    Guo LJ; Qu L; Lee TJ
    Yao Xue Xue Bao; 1995; 30(8):573-6. PubMed ID: 8571776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Pharmacological evaluation of a relaxant effect by perfusion of the isolated middle cerebral artery in the rabbit].
    Oudart N; Boulu RG
    J Pharmacol; 1982; 13(2):353-6. PubMed ID: 7098490
    [No Abstract]   [Full Text] [Related]  

  • 10. Relaxant effects on iloprost in canine cerebral artery.
    Zhang H; Weir B; Doi M; Kasuya H; Cook D
    Can J Physiol Pharmacol; 1992 May; 70(5):712-6. PubMed ID: 1384944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of volatile anesthetics and reactive oxygen intermediates on vascular smooth muscle.
    Freas W; Llave R; Hart J; Golightly D; Nagel J; Muldoon S
    Adv Exp Med Biol; 1991; 301():247-55. PubMed ID: 1662465
    [No Abstract]   [Full Text] [Related]  

  • 12. Withdrawal of magnesium causes vasospasm while elevated magnesium produces relaxation of tone in cerebral arteries.
    Altura BT; Altura BM
    Neurosci Lett; 1980 Dec; 20(3):323-7. PubMed ID: 7443079
    [No Abstract]   [Full Text] [Related]  

  • 13. Cerebral artery selective inhibition of protein kinase c-mediated contraction by hns-32, a novel azulene-1-carboxamidine derivative.
    Noguchi K; Saitoh M; Nakazawa T; Tanaka H; Tanaka Y; Shigenobu K
    Res Commun Mol Pathol Pharmacol; 2000; 107(1-2):45-54. PubMed ID: 11334370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebral vessels in spasm show an enhanced response to calmodulin antagonists.
    Doi M; Cook D
    Proc West Pharmacol Soc; 1992; 35():81-5. PubMed ID: 1502245
    [No Abstract]   [Full Text] [Related]  

  • 15. Mechanism of the antihistamine induced relaxation of canine cerebral arteries.
    Abrol RP; Cook DA
    Proc West Pharmacol Soc; 1984; 27():407-10. PubMed ID: 6149560
    [No Abstract]   [Full Text] [Related]  

  • 16. Relaxation of rings of canine cerebral artery produced by adenosine and its analogues.
    Krueger CA; Cook DA
    Proc West Pharmacol Soc; 1984; 27():143-6. PubMed ID: 6536264
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of neuropeptide Y on contraction, relaxation, and membrane potential of rabbit cerebral arteries.
    Abel PW; Han C
    J Cardiovasc Pharmacol; 1989 Jan; 13(1):52-63. PubMed ID: 2468936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebrovascular selectivity and vasospasmolytic action of the novel calcium antagonist (+/-)-(E)-1-(3-fluoro-6, 11-dihydrodibenz[b,e]oxepin-11-yl)-4-(3-phenyl-2-propenyl)-piperazine dimaleate in isolated cerebral arteries of the rabbit and dog.
    Minato H; Hashizume M; Masuda Y; Fujitani B; Hosoki K
    Arzneimittelforschung; 1997 Apr; 47(4):339-46. PubMed ID: 9150852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of endothelin-1 on the myogenic contraction of canine cerebral artery in response to quick stretch.
    Tanaka Y; Shigenobu K; Nakayama K
    Res Commun Mol Pathol Pharmacol; 2001 Jul; 109(1-2):95-101. PubMed ID: 11458989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular actions of halothane on cat cerebral arterial muscle.
    Harder DR; Gradall K; Madden JA; Kampine JP
    Stroke; 1985; 16(4):680-3. PubMed ID: 4024180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.