These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 22745543)
21. Development and evaluation of a novel TPGS-mediated paclitaxel-loaded PLGA-mPEG nanoparticle for the treatment of ovarian cancer. Lv W; Cheng L; Li B Chem Pharm Bull (Tokyo); 2015; 63(2):68-74. PubMed ID: 25451039 [TBL] [Abstract][Full Text] [Related]
22. Natural Particulates Inspired Specific-Targeted Codelivery of siRNA and Paclitaxel for Collaborative Antitumor Therapy. Wang R; Zhao Z; Han Y; Hu S; Opoku-Damoah Y; Zhou J; Yin L; Ding Y Mol Pharm; 2017 Sep; 14(9):2999-3012. PubMed ID: 28753317 [TBL] [Abstract][Full Text] [Related]
23. Drug-binding albumins forming stabilized nanoparticles for co-delivery of paclitaxel and resveratrol: In vitro/in vivo evaluation and binding properties investigation. Zhao Y; Cai C; Liu M; Zhao Y; Wu Y; Fan Z; Ding Z; Zhang H; Wang Z; Han J Int J Biol Macromol; 2020 Jun; 153():873-882. PubMed ID: 32169451 [TBL] [Abstract][Full Text] [Related]
24. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo. Chuan X; Song Q; Lin J; Chen X; Zhang H; Dai W; He B; Wang X; Zhang Q Mol Pharm; 2014 Oct; 11(10):3656-70. PubMed ID: 25208098 [TBL] [Abstract][Full Text] [Related]
25. Poly-(Lactic-co-Glycolic) Acid Nanoparticles for Synergistic Delivery of Epirubicin and Paclitaxel to Human Lung Cancer Cells. Sharma N; Kumari RM; Gupta N; Syed A; Bahkali AH; Nimesh S Molecules; 2020 Sep; 25(18):. PubMed ID: 32947799 [TBL] [Abstract][Full Text] [Related]
26. Polylysine and cysteine functionalized chitosan nanoparticle as an efficient platform for oral delivery of paclitaxel. Du X; Yin S; Xu L; Ma J; Yu H; Wang G; Li J Carbohydr Polym; 2020 Feb; 229():115484. PubMed ID: 31826482 [TBL] [Abstract][Full Text] [Related]
27. Redox-sensitive carrier-free nanoparticles self-assembled by disulfide-linked paclitaxel-tetramethylpyrazine conjugate for combination cancer chemotherapy. Zou L; Liu X; Li J; Li W; Zhang L; Fu C; Zhang J; Gu Z Theranostics; 2021; 11(9):4171-4186. PubMed ID: 33754055 [No Abstract] [Full Text] [Related]
28. Synthesis and evaluation of a paclitaxel-binding polymeric micelle for efficient breast cancer therapy. Xiang J; Wu B; Zhou Z; Hu S; Piao Y; Zhou Q; Wang G; Tang J; Liu X; Shen Y Sci China Life Sci; 2018 Apr; 61(4):436-447. PubMed ID: 29572777 [TBL] [Abstract][Full Text] [Related]
29. Acetal-linked PEGylated paclitaxel prodrugs forming free-paclitaxel-loaded pH-responsive micelles with high drug loading capacity and improved drug delivery. Huang D; Zhuang Y; Shen H; Yang F; Wang X; Wu D Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():60-68. PubMed ID: 29025675 [TBL] [Abstract][Full Text] [Related]
30. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel. Yang X; Cai X; Yu A; Xi Y; Zhai G J Colloid Interface Sci; 2017 Jun; 496():311-326. PubMed ID: 28237749 [TBL] [Abstract][Full Text] [Related]
31. Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: preparation and comparison with other paclitaxel systems in vitro and in vivo. Lu J; Chuan X; Zhang H; Dai W; Wang X; Wang X; Zhang Q Int J Pharm; 2014 Aug; 471(1-2):525-35. PubMed ID: 24858391 [TBL] [Abstract][Full Text] [Related]
32. Reconstituted high density lipoprotein mediated targeted co-delivery of HZ08 and paclitaxel enhances the efficacy of paclitaxel in multidrug-resistant MCF-7 breast cancer cells. Zhang F; Wang X; Xu X; Li M; Zhou J; Wang W Eur J Pharm Sci; 2016 Sep; 92():11-21. PubMed ID: 27343697 [TBL] [Abstract][Full Text] [Related]
33. pH-responsive drug-loaded peptides enhance drug accumulation and promote apoptosis in tumor cells. Gong Z; Zhao H; Bai J Colloids Surf B Biointerfaces; 2024 Jul; 239():113954. PubMed ID: 38744076 [TBL] [Abstract][Full Text] [Related]
34. Enhanced antitumor efficacy by d-glucosamine-functionalized and paclitaxel-loaded poly(ethylene glycol)-co-poly(trimethylene carbonate) polymer nanoparticles. Jiang X; Xin H; Gu J; Du F; Feng C; Xie Y; Fang X J Pharm Sci; 2014 May; 103(5):1487-96. PubMed ID: 24619482 [TBL] [Abstract][Full Text] [Related]
35. Increased paclitaxel cytotoxicity against cancer cell lines using a novel functionalized carbon nanotube. Sobhani Z; Dinarvand R; Atyabi F; Ghahremani M; Adeli M Int J Nanomedicine; 2011; 6():705-19. PubMed ID: 21556345 [TBL] [Abstract][Full Text] [Related]
36. Novel multi-stimuli responsive functionalized PEG-based co-delivery nanovehicles toward sustainable treatments of multidrug resistant tumor. Xu J; Yan X; Ge X; Zhang M; Dang X; Yang Y; Xu F; Luo Y; Li G J Mater Chem B; 2021 Feb; 9(5):1297-1314. PubMed ID: 33443252 [TBL] [Abstract][Full Text] [Related]
37. pH multistage responsive micellar system with charge-switch and PEG layer detachment for co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells. Yang Z; Sun N; Cheng R; Zhao C; Liu Z; Li X; Liu J; Tian Z Biomaterials; 2017 Dec; 147():53-67. PubMed ID: 28930649 [TBL] [Abstract][Full Text] [Related]
38. Biomimetic Shells Endow Sub-50 nm Nanoparticles with Ultrahigh Paclitaxel Payloads for Specific and Robust Chemotherapy. Chen X; Ling X; Zhao L; Xiong F; Hollett G; Kang Y; Barrett A; Wu J ACS Appl Mater Interfaces; 2018 Oct; 10(40):33976-33985. PubMed ID: 30203956 [TBL] [Abstract][Full Text] [Related]
39. HFT-T, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors. Wang X; Li J; Wang Y; Cho KJ; Kim G; Gjyrezi A; Koenig L; Giannakakou P; Shin HJ; Tighiouart M; Nie S; Chen ZG; Shin DM ACS Nano; 2009 Oct; 3(10):3165-74. PubMed ID: 19761191 [TBL] [Abstract][Full Text] [Related]
40. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Shenoy D; Little S; Langer R; Amiji M Mol Pharm; 2005; 2(5):357-66. PubMed ID: 16196488 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]