These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22745724)

  • 21. Evolution of a stream ecosystem in recently deglaciated terrain.
    Milner AM; Robertson AL; Brown LE; Sønderland SH; McDermott M; Veal AJ
    Ecology; 2011 Oct; 92(10):1924-35. PubMed ID: 22073784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Habitat saturation drives thresholds in stream subsidies.
    Moore JW; Schindler DE; Ruff CP
    Ecology; 2008 Feb; 89(2):306-12. PubMed ID: 18409419
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The energetic consequences of habitat structure for forest stream salmonids.
    Naman SM; Rosenfeld JS; Kiffney PM; Richardson JS
    J Anim Ecol; 2018 Sep; 87(5):1383-1394. PubMed ID: 29737519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of habitat features on size-biased predation on salmon by bears.
    Andersson LC; Reynolds JD
    Oecologia; 2017 May; 184(1):101-114. PubMed ID: 28251344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple stress response of lowland stream benthic macroinvertebrates depends on habitat type.
    Graeber D; Jensen TM; Rasmussen JJ; Riis T; Wiberg-Larsen P; Baattrup-Pedersen A
    Sci Total Environ; 2017 Dec; 599-600():1517-1523. PubMed ID: 28531960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Twenty years of stream restoration in Finland: little response by benthic macroinvertebrate communities.
    Louhi P; Mykrä H; Paavola R; Huusko A; Vehanen T; Mäki-Petäys A; Muotka T
    Ecol Appl; 2011 Sep; 21(6):1950-61. PubMed ID: 21939036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of hydromorphology and spatial scale on macroinvertebrate assemblage composition in streams.
    Verdonschot PF
    Integr Environ Assess Manag; 2009 Jan; 5(1):97-109. PubMed ID: 19431295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Connecting thiamine availability to the microbial community composition in Chinook salmon spawning habitats of the Sacramento River basin.
    Suffridge CP; Shannon KC; Matthews H; Johnson RC; Jeffres C; Mantua N; Ward AE; Holmes E; Kindopp J; Aidoo M; Colwell FS
    Appl Environ Microbiol; 2024 Jan; 90(1):e0176023. PubMed ID: 38084986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diversity and relative abundance of the bacterial pathogen, Flavobacterium spp., infecting reproductive ecotypes of kokanee salmon.
    Lemay MA; Russello MA
    BMC Res Notes; 2014 Nov; 7():778. PubMed ID: 25367228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hypoxia vulnerability in the salmon watersheds of Southeast Alaska.
    Sergeant CJ; Bellmore JR; Bellmore RA; Falke JA; Mueter FJ; Westley PAH
    Sci Total Environ; 2023 Oct; 896():165247. PubMed ID: 37400021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sea to sky: impacts of residual salmon-derived nutrients on estuarine breeding bird communities.
    Field RD; Reynolds JD
    Proc Biol Sci; 2011 Oct; 278(1721):3081-8. PubMed ID: 21325324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Density declines, richness increases, and composition shifts in stream macroinvertebrates.
    Rumschlag SL; Mahon MB; Jones DK; Battaglin W; Behrens J; Bernhardt ES; Bradley P; Brown E; De Laender F; Hill R; Kunz S; Lee S; Rosi E; Schäfer R; Schmidt TS; Simonin M; Smalling K; Voss K; Rohr JR
    Sci Adv; 2023 May; 9(18):eadf4896. PubMed ID: 37134169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon: The Importance of Geomorphic Features in Large Rivers.
    Geist DR; Dauble DD
    Environ Manage; 1998 Sep; 22(5):655-69. PubMed ID: 9680535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fine-scale natal homing and localized movement as shaped by sex and spawning habitat in Chinook salmon: insights from spatial autocorrelation analysis of individual genotypes.
    Neville HM; Isaak DJ; Dunham JB; Thurow RF; Rieman BE
    Mol Ecol; 2006 Dec; 15(14):4589-602. PubMed ID: 17107485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of Macroinvertebrate Communities in the Hyporheic Zone of River Ecosystems Reflects the Pump-Sampling Technique Used.
    Stubbington R; Dole-Olivier MJ; Galassi DM; Hogan JP; Wood PJ
    PLoS One; 2016; 11(10):e0164372. PubMed ID: 27723819
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stream invertebrate communities are primarily shaped by hydrological factors and ultimately fine-tuned by local habitat conditions.
    Karaouzas I; Theodoropoulos C; Vourka A; Gritzalis K; Skoulikidis NT
    Sci Total Environ; 2019 May; 665():290-299. PubMed ID: 30772559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Timber harvest transforms ecological roles of salmon in southeast Alaska rain forest streams.
    Tiegs SD; Chaloner DT; Levi P; Rüegg J; Tank JL; Lamberti GA
    Ecol Appl; 2008 Jan; 18(1):4-11. PubMed ID: 18372551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Climate change sensitivity index for Pacific salmon habitat in southeast Alaska.
    Shanley CS; Albert DM
    PLoS One; 2014; 9(8):e104799. PubMed ID: 25127398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Movement patterns of invertebrates in temporary and permanent streams.
    Delucchi CM
    Oecologia; 1989 Feb; 78(2):199-207. PubMed ID: 28312359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Founding events influence genetic population structure of sockeye salmon (Oncorhynchus nerka) in Lake Clark, Alaska.
    Ramstad KM; Woody CA; Sage GK; Allendorf FW
    Mol Ecol; 2004 Feb; 13(2):277-90. PubMed ID: 14717887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.