These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions. Majeed H; Liu F; Hategekimana J; Sharif HR; Qi J; Ali B; Bian YY; Ma J; Yokoyama W; Zhong F Food Chem; 2016 Apr; 197(Pt A):75-83. PubMed ID: 26616926 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and physicochemical and antibacterial properties of ethyl cellulose-structured cinnamon oil oleogel: relation between ethyl cellulose viscosity and oleogel performance. Zhang K; Wang W; Wang X; Cheng S; Zhou J; Wu Z; Li Y J Sci Food Agric; 2019 Jun; 99(8):4063-4071. PubMed ID: 30761529 [TBL] [Abstract][Full Text] [Related]
4. Influence of droplet size on the efficacy of oil-in-water emulsions loaded with phenolic antimicrobials. Terjung N; Löffler M; Gibis M; Hinrichs J; Weiss J Food Funct; 2012 Mar; 3(3):290-301. PubMed ID: 22183117 [TBL] [Abstract][Full Text] [Related]
5. Comparative study on the in vitro antibacterial activity of Australian tea tree oil, cajuput oil, niaouli oil, manuka oil, kanuka oil, and eucalyptus oil. Harkenthal M; Reichling J; Geiss HK; Saller R Pharmazie; 1999 Jun; 54(6):460-3. PubMed ID: 10399193 [TBL] [Abstract][Full Text] [Related]
6. Essential oil micro- and nanoemulsions: promising roles in antimicrobial therapy targeting human pathogens. Franklyne JS; Mukherjee A; Chandrasekaran N Lett Appl Microbiol; 2016 Nov; 63(5):322-334. PubMed ID: 27542872 [TBL] [Abstract][Full Text] [Related]
7. Pepper fragrant essential oil (PFEO) and functionalized MCM-41 nanoparticles: formation, characterization, and bactericidal activity. Jin L; Teng J; Hu L; Lan X; Xu Y; Sheng J; Song Y; Wang M J Sci Food Agric; 2019 Aug; 99(11):5168-5175. PubMed ID: 31056749 [TBL] [Abstract][Full Text] [Related]
8. Nanoemulsions containing Cymbopogon flexuosus essential oil: Development, characterization, stability study and evaluation of antimicrobial and antibiofilm activities. da Silva Gündel S; de Souza ME; Quatrin PM; Klein B; Wagner R; Gündel A; Vaucher RA; Santos RCV; Ourique AF Microb Pathog; 2018 May; 118():268-276. PubMed ID: 29581028 [TBL] [Abstract][Full Text] [Related]
9. Preparation of peppermint oil nanoemulsions: Investigation of stability, antibacterial mechanism and apoptosis effects. Liu Q; Gao Y; Fu X; Chen W; Yang J; Chen Z; Wang Z; Zhuansun X; Feng J; Chen Y Colloids Surf B Biointerfaces; 2021 May; 201():111626. PubMed ID: 33631642 [TBL] [Abstract][Full Text] [Related]
10. Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: influence of ripening inhibitors. Chang Y; McLandsborough L; McClements DJ J Agric Food Chem; 2012 Dec; 60(48):12056-63. PubMed ID: 23140446 [TBL] [Abstract][Full Text] [Related]
11. Antibacterial activity, optical, mechanical, and barrier properties of corn starch films containing orange essential oil. do Evangelho JA; da Silva Dannenberg G; Biduski B; El Halal SLM; Kringel DH; Gularte MA; Fiorentini AM; da Rosa Zavareze E Carbohydr Polym; 2019 Oct; 222():114981. PubMed ID: 31320073 [TBL] [Abstract][Full Text] [Related]
12. Ultrasonic emulsification of eucalyptus oil nanoemulsion: antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Sugumar S; Ghosh V; Nirmala MJ; Mukherjee A; Chandrasekaran N Ultrason Sonochem; 2014 May; 21(3):1044-9. PubMed ID: 24262758 [TBL] [Abstract][Full Text] [Related]
13. Stability and antibacterial activity of Thymus daenensis L. essential oil nanoemulsion in mayonnaise. Mansouri S; Pajohi-Alamoti M; Aghajani N; Bazargani-Gilani B; Nourian A J Sci Food Agric; 2021 Jul; 101(9):3880-3888. PubMed ID: 33336802 [TBL] [Abstract][Full Text] [Related]
14. Physicochemical properties and antimicrobial efficacy of carvacrol nanoemulsions formed by spontaneous emulsification. Chang Y; McLandsborough L; McClements DJ J Agric Food Chem; 2013 Sep; 61(37):8906-13. PubMed ID: 23998790 [TBL] [Abstract][Full Text] [Related]
15. Development of antimicrobial nanoemulsion-based delivery systems against selected pathogenic bacteria using a thymol-rich Thymus daenensis essential oil. Ghaderi L; Moghimi R; Aliahmadi A; McClements DJ; Rafati H J Appl Microbiol; 2017 Oct; 123(4):832-840. PubMed ID: 28714250 [TBL] [Abstract][Full Text] [Related]
16. Chemical composition and antibacterial activity of essential oils of Tripleurospermum disciforme in three developmental stages. Chehregani A; Mohsenzadeh F; Mirazi N; Hajisadeghian S; Baghali Z Pharm Biol; 2010 Nov; 48(11):1280-4. PubMed ID: 20795784 [TBL] [Abstract][Full Text] [Related]
17. Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens. Topuz OK; Özvural EB; Zhao Q; Huang Q; Chikindas M; Gölükçü M Food Chem; 2016 Jul; 203():117-123. PubMed ID: 26948596 [TBL] [Abstract][Full Text] [Related]
18. Chemical composition and antibacterial activity of the rhizome oil of Hedychium larsenii. Gopanraj G; Dan M; Shiburaj S; Sethuraman MG; George V Acta Pharm; 2005 Sep; 55(3):315-20. PubMed ID: 16375842 [TBL] [Abstract][Full Text] [Related]
19. Physical and antimicrobial properties of cinnamon bark oil co-nanoemulsified by lauric arginate and Tween 80. Hilbig J; Ma Q; Davidson PM; Weiss J; Zhong Q Int J Food Microbiol; 2016 Sep; 233():52-59. PubMed ID: 27322724 [TBL] [Abstract][Full Text] [Related]
20. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions. Ziani K; Chang Y; McLandsborough L; McClements DJ J Agric Food Chem; 2011 Jun; 59(11):6247-55. PubMed ID: 21520914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]