BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 22746195)

  • 1. Applications of NMR crystallography to problems in biomineralization: refinement of the crystal structure and 31P solid-state NMR spectral assignment of octacalcium phosphate.
    Davies E; Duer MJ; Ashbrook SE; Griffin JM
    J Am Chem Soc; 2012 Aug; 134(30):12508-15. PubMed ID: 22746195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-state P-31 NMR study of octacalcium phosphate incorporated with succinate.
    Tsai TW; Chou FC; Tseng YH; Chan JC
    Phys Chem Chem Phys; 2010 Jul; 12(25):6692-7. PubMed ID: 20422114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation.
    Tseng YH; Mou CY; Chan JC
    J Am Chem Soc; 2006 May; 128(21):6909-18. PubMed ID: 16719471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High resolution 31P NMR study of octacalcium phosphate.
    Tseng YH; Zhan J; Lin KS; Mou CY; Chan JC
    Solid State Nucl Magn Reson; 2004 Sep; 26(2):99-104. PubMed ID: 15276640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization.
    Wu Y; Ackerman JL; Strawich ES; Rey C; Kim HM; Glimcher MJ
    Calcif Tissue Int; 2003 May; 72(5):610-26. PubMed ID: 12724829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Octacalcium phosphate: osteoconductivity and crystal chemistry.
    Suzuki O
    Acta Biomater; 2010 Sep; 6(9):3379-87. PubMed ID: 20371385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration and temperature dependence of 13C and 1H NMR spectra of the DMPC phospholipid membrane and complete resonance assignment of its crystalline state.
    Nomura K; Lintuluoto M; Morigaki K
    J Phys Chem B; 2011 Dec; 115(50):14991-5001. PubMed ID: 22044314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing quantum-chemical calculation methods for structural investigation of zeolite crystal structures by solid-state NMR spectroscopy.
    Brouwer DH; Moudrakovski IL; Darton RJ; Morris RE
    Magn Reson Chem; 2010 Dec; 48 Suppl 1():S113-21. PubMed ID: 20623826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A unique protonated phosphate group in bone mineral not present in synthetic calcium phosphates. Identification by phosphorus-31 solid state NMR spectroscopy.
    Wu Y; Glimcher MJ; Rey C; Ackerman JL
    J Mol Biol; 1994 Dec; 244(4):423-35. PubMed ID: 7990131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of host-guest interactions in benzodiazacoronands by means of solid state NMR spectroscopy, X-ray diffraction and quantum mechanical computations.
    Nowicka K; Bujacz A; Paluch P; Sobczuk A; Jeziorna A; Ciesielski W; Bujacz GD; Jurczak J; Potrzebowski MJ
    Phys Chem Chem Phys; 2011 Apr; 13(14):6423-33. PubMed ID: 21384038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete 13C NMR chemical shifts assignment for cholesterol crystals by combined CP-MAS spectral editing and ab initio GIPAW calculations with dispersion forces.
    Küçükbenli E; Sonkar K; Sinha N; de Gironcoli S
    J Phys Chem A; 2012 Apr; 116(14):3765-9. PubMed ID: 22424177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly ordered interstitial water observed in bone by nuclear magnetic resonance.
    Wilson EE; Awonusi A; Morris MD; Kohn DH; Tecklenburg MM; Beck LW
    J Bone Miner Res; 2005 Apr; 20(4):625-34. PubMed ID: 15765182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidation of structural restraints for phosphate residues with different hydrogen bonding and ionization states.
    Gajda J; Olejniczak S; Bryndal I; Potrzebowski MJ
    J Phys Chem B; 2008 Nov; 112(44):14036-44. PubMed ID: 18842016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of pyrazoles in the solid state: a combined CPMAS, NMR, and crystallographic study.
    Claramunt RM; Cornago P; Torres V; Pinilla E; Torres MR; Samat A; Lokshin V; Valés M; Elguero J
    J Org Chem; 2006 Sep; 71(18):6881-91. PubMed ID: 16930041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-principles calculations of NMR parameters for phosphate materials.
    Vasconcelos F; Cristol S; Paul JF; Montagne L; Mauri F; Delevoye L
    Magn Reson Chem; 2010 Dec; 48 Suppl 1():S142-50. PubMed ID: 20821412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of protonation state by XPS, solid-state NMR, and DFT: characterization of the nature of a new theophylline complex by experimental and computational methods.
    Stevens JS; Byard SJ; Muryn CA; Schroeder SL
    J Phys Chem B; 2010 Nov; 114(44):13961-9. PubMed ID: 20961046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental (X-ray, (13)C CP/MAS NMR, IR, RS, INS, THz) and Solid-State DFT Study on (1:1) Co-Crystal of Bromanilic Acid and 2,6-Dimethylpyrazine.
    Łuczyńska K; Drużbicki K; Lyczko K; Dobrowolski JC
    J Phys Chem B; 2015 Jun; 119(22):6852-72. PubMed ID: 25961154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine refinement of solid state structure of racemic form of phospho-tyrosine employing NMR Crystallography approach.
    Paluch P; Pawlak T; Oszajca M; Lasocha W; Potrzebowski MJ
    Solid State Nucl Magn Reson; 2015 Feb; 65():2-11. PubMed ID: 25240460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid titration of octacalcium phosphate.
    Pan HB; Darvell BW
    Caries Res; 2009; 43(4):322-30. PubMed ID: 19556792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can the conformation of flexible hydroxyl groups be constrained by simple NMR crystallography approaches? The case of the quercetin solid forms.
    Filip X; Filip C
    Solid State Nucl Magn Reson; 2015 Feb; 65():21-8. PubMed ID: 25465481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.