These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22747100)

  • 1. Predictive model development for adsorption of aromatic contaminants by multi-walled carbon nanotubes.
    Apul OG; Wang Q; Shao T; Rieck JR; Karanfil T
    Environ Sci Technol; 2013 Mar; 47(5):2295-303. PubMed ID: 22747100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear solvation energy relationships (LSER) for adsorption of organic compounds by carbon nanotubes.
    Ersan G; Apul OG; Karanfil T
    Water Res; 2016 Jul; 98():28-38. PubMed ID: 27064209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms and modeling of halogenated aliphatic contaminant adsorption by carbon nanotubes.
    Apul OG; Zhou Y; Karanfil T
    J Hazard Mater; 2015 Sep; 295():138-44. PubMed ID: 25897695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LSER model for organic compounds adsorption by single-walled carbon nanotubes: Comparison with multi-walled carbon nanotubes and activated carbon.
    Yu X; Sun W; Ni J
    Environ Pollut; 2015 Nov; 206():652-60. PubMed ID: 26319510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of sorption of aromatic and aliphatic organic compounds by carbon nanotubes using poly-parameter linear free-energy relationships.
    Hüffer T; Endo S; Metzelder F; Schroth S; Schmidt TC
    Water Res; 2014 Aug; 59():295-303. PubMed ID: 24813337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear solvation energy relationship for the adsorption of synthetic organic compounds on single-walled carbon nanotubes in water.
    Ding H; Chen C; Zhang X
    SAR QSAR Environ Res; 2016; 27(1):31-45. PubMed ID: 26854726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive models for adsorption of organic compounds by Graphene nanosheets: comparison with carbon nanotubes.
    Ersan G; Apul OG; Karanfil T
    Sci Total Environ; 2019 Mar; 654():28-34. PubMed ID: 30439691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption modeling of organic compounds (OCs) by carbon nanotubes (CNTs): role of OC and CNT properties on the linear solvation energy relationship.
    Ersan G
    Water Sci Technol; 2021 Oct; 84(7):1635-1647. PubMed ID: 34662302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of the adsorption coefficients of some aromatic compounds on multi-wall carbon nanotubes by the Monte Carlo method.
    Ahmadi S; Akbari A
    SAR QSAR Environ Res; 2018 Nov; 29(11):895-909. PubMed ID: 30332923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear solvation energy relationship to predict the adsorption of aromatic contaminants on graphene oxide.
    Shan S; Zhao Y; Tang H; Cui F
    Chemosphere; 2017 Oct; 185():826-832. PubMed ID: 28735235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum-mechanical LSERs for the concentration-dependent adsorption of aromatic organic compounds by activated carbon: Applications and comparison with carbon nanotubes.
    Lata S; Vikas
    SAR QSAR Environ Res; 2019 Feb; 30(2):109-130. PubMed ID: 30727761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Externally predictive quantum-mechanical models for the adsorption of aromatic organic compounds by graphene-oxide nanomaterials.
    Lata S; Vikas
    SAR QSAR Environ Res; 2019 Dec; 30(12):847-863. PubMed ID: 31577156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the interactions of organic compounds with multi-walled carbon nanotubes by self-packed HPLC column and linear solvation energy relationship.
    Chu Y; Li X; Xie H; Fu Z; Yang X; Qiao X; Cai X; Chen J
    J Hazard Mater; 2013 Dec; 263 Pt 2():550-5. PubMed ID: 24231331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear free energy relationships for the adsorption of volatile organic compounds onto multiwalled carbon nanotubes at different relative humidities: comparison with organoclays and activated carbon.
    Li MS; Wang R; Fu Kuo DT; Shih YH
    Environ Sci Process Impacts; 2017 Mar; 19(3):276-287. PubMed ID: 28165513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of aromatic carboxylic acids on carbon nanotubes: impact of surface functionalization, molecular size and structure.
    Li S; Arsano I; Talapatra S; Tsige M; Ma X
    Environ Sci Process Impacts; 2019 Dec; 21(12):2109-2117. PubMed ID: 31656961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups.
    Lin D; Xingt B
    Environ Sci Technol; 2008 Oct; 42(19):7254-9. PubMed ID: 18939555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption kinetics of aromatic compounds on carbon nanotubes and activated carbons.
    Zhang S; Shao T; Kose HS; Karanfil T
    Environ Toxicol Chem; 2012 Jan; 31(1):79-85. PubMed ID: 22021047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of sorption mechanisms of VOCs with organobentonites using a LSER approach.
    Tian S; Zhu L; Shi Y
    Environ Sci Technol; 2004 Jan; 38(2):489-95. PubMed ID: 14750724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of volatile organic compound adsorption on multiwall carbon nanotubes under different levels of relative humidity using linear solvation energy relationship.
    Li MS; Wu SC; Shih YH
    J Hazard Mater; 2016 Sep; 315():35-41. PubMed ID: 27152974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentration dependent adsorption of aromatic organic compounds by SWCNTs: Quantum-mechanical descriptors for nano-toxicological studies of biomolecules and agrochemicals.
    Lata S; Vikas
    J Mol Graph Model; 2018 Oct; 85():232-241. PubMed ID: 30227368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.