BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

560 related articles for article (PubMed ID: 22747414)

  • 1. Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions.
    Huang W; Giddens J; Fan SQ; Toonstra C; Wang LX
    J Am Chem Soc; 2012 Jul; 134(29):12308-18. PubMed ID: 22747414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoenzymatic Glyco-engineering of Monoclonal Antibodies.
    Giddens JP; Wang LX
    Methods Mol Biol; 2015; 1321():375-87. PubMed ID: 26082235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycosynthase Mutants of Endoglycosidase S2 Show Potent Transglycosylation Activity and Remarkably Relaxed Substrate Specificity for Antibody Glycosylation Remodeling.
    Li T; Tong X; Yang Q; Giddens JP; Wang LX
    J Biol Chem; 2016 Aug; 291(32):16508-18. PubMed ID: 27288408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities.
    Kurogochi M; Mori M; Osumi K; Tojino M; Sugawara S; Takashima S; Hirose Y; Tsukimura W; Mizuno M; Amano J; Matsuda A; Tomita M; Takayanagi A; Shoda S; Shirai T
    PLoS One; 2015; 10(7):e0132848. PubMed ID: 26200113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation and Comparative Kinetic Analysis of New Glycosynthase Mutants from Streptococcus pyogenes Endoglycosidases for Antibody Glycoengineering.
    Tong X; Li T; Li C; Wang LX
    Biochemistry; 2018 Sep; 57(35):5239-5246. PubMed ID: 30102520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-pot enzymatic glycan remodeling of a therapeutic monoclonal antibody by endoglycosidase S (Endo-S) from Streptococcus pyogenes.
    Tong X; Li T; Orwenyo J; Toonstra C; Wang LX
    Bioorg Med Chem; 2018 Apr; 26(7):1347-1355. PubMed ID: 28789910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-selective chemoenzymatic glycoengineering of Fab and Fc glycans of a therapeutic antibody.
    Giddens JP; Lomino JV; DiLillo DJ; Ravetch JV; Wang LX
    Proc Natl Acad Sci U S A; 2018 Nov; 115(47):12023-12027. PubMed ID: 30397147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of terminal galactose residues in mannose α1-6 arm of Fc-glycan on the effector functions of therapeutic monoclonal antibodies.
    Aoyama M; Hashii N; Tsukimura W; Osumi K; Harazono A; Tada M; Kiyoshi M; Matsuda A; Ishii-Watabe A
    MAbs; 2019 Jul; 11(5):826-836. PubMed ID: 30990348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms.
    Wada R; Matsui M; Kawasaki N
    MAbs; 2019; 11(2):350-372. PubMed ID: 30466347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EndoS from Streptococcus pyogenes is hydrolyzed by the cysteine proteinase SpeB and requires glutamic acid 235 and tryptophans for IgG glycan-hydrolyzing activity.
    Allhorn M; Olsén A; Collin M
    BMC Microbiol; 2008 Jan; 8():3. PubMed ID: 18182097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EndoS2 is a unique and conserved enzyme of serotype M49 group A Streptococcus that hydrolyses N-linked glycans on IgG and α1-acid glycoprotein.
    Sjögren J; Struwe WB; Cosgrave EF; Rudd PM; Stervander M; Allhorn M; Hollands A; Nizet V; Collin M
    Biochem J; 2013 Oct; 455(1):107-18. PubMed ID: 23865566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insights into the mechanisms and specificities of IgG-active endoglycosidases.
    Du JJ; Klontz EH; Guerin ME; Trastoy B; Sundberg EJ
    Glycobiology; 2020 Mar; 30(4):268-279. PubMed ID: 31172182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced transglycosylation activity of an Endo-F3 mutant by ligand-directed localization.
    Zou X; Liu Z; Liu L; Shi W; Li W; Guo Z; Tang F; Huang W
    Org Biomol Chem; 2022 Apr; 20(15):3086-3095. PubMed ID: 35166761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Immunomodulatory Effect of Intravenous Immunoglobulin by Fc Galactosylation and Nonfucosylation.
    Mimura Y; Mimura-Kimura Y; Saldova R; Rudd PM; Jefferis R
    Front Immunol; 2022; 13():818382. PubMed ID: 35154135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions.
    Wang Q; Wang T; Zhang R; Yang S; McFarland KS; Chung CY; Jia H; Wang LX; Cipollo JF; Betenbaugh MJ
    Biotechnol Bioeng; 2022 Jan; 119(1):102-117. PubMed ID: 34647616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragments of bacterial endoglycosidase s and immunoglobulin g reveal subdomains of each that contribute to deglycosylation.
    Dixon EV; Claridge JK; Harvey DJ; Baruah K; Yu X; Vesiljevic S; Mattick S; Pritchard LK; Krishna B; Scanlan CN; Schnell JR; Higgins MK; Zitzmann N; Crispin M
    J Biol Chem; 2014 May; 289(20):13876-89. PubMed ID: 24668806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycoengineering of human IgG1-Fc through combined yeast expression and in vitro chemoenzymatic glycosylation.
    Wei Y; Li C; Huang W; Li B; Strome S; Wang LX
    Biochemistry; 2008 Sep; 47(39):10294-304. PubMed ID: 18771295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EndoS and EndoS2 hydrolyze Fc-glycans on therapeutic antibodies with different glycoform selectivity and can be used for rapid quantification of high-mannose glycans.
    Sjögren J; Cosgrave EF; Allhorn M; Nordgren M; Björk S; Olsson F; Fredriksson S; Collin M
    Glycobiology; 2015 Oct; 25(10):1053-63. PubMed ID: 26156869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallizable Fragment Glycoengineering for Therapeutic Antibodies Development.
    Li W; Zhu Z; Chen W; Feng Y; Dimitrov DS
    Front Immunol; 2017; 8():1554. PubMed ID: 29181010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro glycoengineering of IgG1 and its effect on Fc receptor binding and ADCC activity.
    Thomann M; Schlothauer T; Dashivets T; Malik S; Avenal C; Bulau P; Rüger P; Reusch D
    PLoS One; 2015; 10(8):e0134949. PubMed ID: 26266936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.