BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 22747662)

  • 1. Subcellular localization of sphingomyelin revealed by two toxin-based probes in mammalian cells.
    Yachi R; Uchida Y; Balakrishna BH; Anderluh G; Kobayashi T; Taguchi T; Arai H
    Genes Cells; 2012 Aug; 17(8):720-7. PubMed ID: 22747662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex formation of sphingomyelin synthase 1 with glucosylceramide synthase increases sphingomyelin and decreases glucosylceramide levels.
    Hayashi Y; Nemoto-Sasaki Y; Matsumoto N; Hama K; Tanikawa T; Oka S; Saeki T; Kumasaka T; Koizumi T; Arai S; Wada I; Yokoyama K; Sugiura T; Yamashita A
    J Biol Chem; 2018 Nov; 293(45):17505-17522. PubMed ID: 30242129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcellular targeting domains of sphingomyelin synthase 1 and 2.
    Yeang C; Ding T; Chirico WJ; Jiang XC
    Nutr Metab (Lond); 2011 Dec; 8():89. PubMed ID: 22168400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Synthesis and Characterization of an Equinatoxin II(1-85) Analogue.
    Karas JA; Sani MA; Separovic F
    Molecules; 2017 Mar; 22(4):. PubMed ID: 28358312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of the heterogeneous membrane distribution of sphingomyelin associated with cytokinesis, cell polarity, and sphingolipidosis.
    Makino A; Abe M; Murate M; Inaba T; Yilmaz N; Hullin-Matsuda F; Kishimoto T; Schieber NL; Taguchi T; Arai H; Anderluh G; Parton RG; Kobayashi T
    FASEB J; 2015 Feb; 29(2):477-93. PubMed ID: 25389132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysenin, a novel sphingomyelin-specific binding protein.
    Yamaji A; Sekizawa Y; Emoto K; Sakuraba H; Inoue K; Kobayashi H; Umeda M
    J Biol Chem; 1998 Feb; 273(9):5300-6. PubMed ID: 9478988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of sphingomyelin and sphingomyelin synthases in cell death, proliferation and migration-from cell and animal models to human disorders.
    Taniguchi M; Okazaki T
    Biochim Biophys Acta; 2014 May; 1841(5):692-703. PubMed ID: 24355909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic control from the endolysosome: lysosome-resident amino acid transporters open novel therapeutic possibilities.
    Kobayashi T; Toyama-Sorimachi N
    Front Immunol; 2023; 14():1243104. PubMed ID: 37781390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore-Forming Proteins: From Pore Assembly to Structure by Quantitative Single-Molecule Imaging.
    Margheritis E; Kappelhoff S; Cosentino K
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single point mutation expands the applicability of ostreolysin A6 in biomedicine.
    Panevska A; Čegovnik N; Fortuna K; Vukovič A; Grundner M; Modic Š; Bajc G; Skočaj M; Mravinec Bohte M; Popošek LL; Žigon P; Razinger J; Veranič P; Resnik N; Sepčić K
    Sci Rep; 2023 Feb; 13(1):2149. PubMed ID: 36750638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural Ligand-Mimetic and Nonmimetic Inhibitors of the Ceramide Transport Protein CERT.
    Hanada K; Sakai S; Kumagai K
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compartmentalization of Sphingolipid metabolism: Implications for signaling and therapy.
    Canals D; Clarke CJ
    Pharmacol Ther; 2022 Apr; 232():108005. PubMed ID: 34582834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond pore formation: reorganization of the plasma membrane induced by pore-forming proteins.
    Kulma M; Anderluh G
    Cell Mol Life Sci; 2021 Sep; 78(17-18):6229-6249. PubMed ID: 34387717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small Pore-Forming Toxins Different Membrane Area Binding and Ca
    Larpin Y; Besançon H; Babiychuk VS; Babiychuk EB; Köffel R
    Toxins (Basel); 2021 Feb; 13(2):. PubMed ID: 33572185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphingolipid biosynthesis modulates plasmodesmal ultrastructure and phloem unloading.
    Yan D; Yadav SR; Paterlini A; Nicolas WJ; Petit JD; Brocard L; Belevich I; Grison MS; Vaten A; Karami L; El-Showk S; Lee JY; Murawska GM; Mortimer J; Knoblauch M; Jokitalo E; Markham JE; Bayer EM; Helariutta Y
    Nat Plants; 2019 Jun; 5(6):604-615. PubMed ID: 31182845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approaches for probing and evaluating mammalian sphingolipid metabolism.
    Snider JM; Luberto C; Hannun YA
    Anal Biochem; 2019 Jun; 575():70-86. PubMed ID: 30917945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Budding Yeast: An Ideal Backdrop for
    Singh P
    Front Cell Dev Biol; 2016; 4():156. PubMed ID: 28119915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying lipid changes in various membrane compartments using lipid binding protein domains.
    Várnai P; Gulyás G; Tóth DJ; Sohn M; Sengupta N; Balla T
    Cell Calcium; 2017 Jun; 64():72-82. PubMed ID: 28088320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of an invertebrate cytolysin pore reveals unique properties and mechanism of assembly.
    Podobnik M; Savory P; Rojko N; Kisovec M; Wood N; Hambley R; Pugh J; Wallace EJ; McNeill L; Bruce M; Liko I; Allison TM; Mehmood S; Yilmaz N; Kobayashi T; Gilbert RJ; Robinson CV; Jayasinghe L; Anderluh G
    Nat Commun; 2016 May; 7():11598. PubMed ID: 27176125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes.
    Maekawa M; Yang Y; Fairn GD
    Toxins (Basel); 2016 Mar; 8(3):. PubMed ID: 27005662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.