BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 22747897)

  • 1. A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump.
    Han Q; Zou J; Ruan X; Fu X; Yang H
    Artif Organs; 2012 Aug; 36(8):739-46. PubMed ID: 22747897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The spiral groove bearing as a mechanism for enhancing the secondary flow in a centrifugal rotary blood pump.
    Amaral F; Gross-Hardt S; Timms D; Egger C; Steinseifer U; Schmitz-Rode T
    Artif Organs; 2013 Oct; 37(10):866-74. PubMed ID: 23635098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma Skimming in a Spiral Groove Bearing of a Centrifugal Blood Pump.
    Murashige T; Sakota D; Kosaka R; Nishida M; Kawaguchi Y; Yamane T; Maruyama O
    Artif Organs; 2016 Sep; 40(9):856-66. PubMed ID: 27645396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concept for a new hydrodynamic blood bearing for miniature blood pumps.
    Kink T; Reul H
    Artif Organs; 2004 Oct; 28(10):916-20. PubMed ID: 15384998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Impact of Pulsatile Flow on Suspension Force for Hydrodynamically Levitated Blood Pump.
    Fu Y; Hu Y; Huang F; Zhou M
    J Healthc Eng; 2019; 2019():8065920. PubMed ID: 31281617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of gap size and groove design of hydrodynamic bearing on plasma skimming effect for use in rotary blood pump.
    Jiang M; Sakota D; Kosaka R; Hijikata W
    J Artif Organs; 2022 Sep; 25(3):195-203. PubMed ID: 35088287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applicability of Narrow Groove Theory in Designing Washout Features for Rotary Blood Pumps
    Bieritz SA; Alex Smith P; Wang Y; Cohn WE; Grande-Allen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5419-5424. PubMed ID: 34892352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational fluid dynamics verified the advantages of streamlined impeller design in improving flow patterns and anti-haemolysis properties of centrifugal pump.
    Qian KX; Wang FQ; Zeng P; Ru WM; Yuan HY; Feng ZG
    J Med Eng Technol; 2006; 30(6):353-7. PubMed ID: 17060163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical and in vitro investigations of pressure rise in a new hydrodynamic blood bearing.
    Chan WK; Ooi KT; Loh YC
    Artif Organs; 2007 Jun; 31(6):434-40. PubMed ID: 17537055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a Spiral Groove Geometry for Improvement of Hemolysis Level in a Hydrodynamically Levitated Centrifugal Blood Pump.
    Murashige T; Kosaka R; Sakota D; Nishida M; Kawaguchi Y; Yamane T; Maruyama O
    Artif Organs; 2015 Aug; 39(8):710-4. PubMed ID: 26146791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inlet and outlet devices for rotary blood pumps.
    Song X; Wood HG; Allaire PE; Antaki JF; Olsen DB
    Artif Organs; 2004 Oct; 28(10):911-5. PubMed ID: 15384997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics.
    Arvand A; Hahn N; Hormes M; Akdis M; Martin M; Reul H
    Artif Organs; 2004 Oct; 28(10):892-8. PubMed ID: 15384994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of erythrocyte flow at a bearing gap in a hydrodynamically levitated centrifugal blood pump.
    Murashige T; Kosaka R; Sakota D; Nishida M; Kawaguchi Y; Yamane T; Maruyama O
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():270-3. PubMed ID: 26736252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spiral groove bearing design for improving plasma skimming in rotary blood pumps.
    Jiang M; Hijikata W
    J Artif Organs; 2023 Dec; ():. PubMed ID: 38153606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of computational fluid dynamics techniques to blood pumps.
    Sukumar R; Athavale MM; Makhijani VB; Przekwas AJ
    Artif Organs; 1996 Jun; 20(6):529-33. PubMed ID: 8817950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump.
    Zhang J; Gellman B; Koert A; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2006 Mar; 30(3):168-77. PubMed ID: 16480391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational fluid dynamics investigation of a centrifugal blood pump.
    Legendre D; Antunes P; Bock E; Andrade A; Biscegli JF; Ortiz JP
    Artif Organs; 2008 Apr; 32(4):342-8. PubMed ID: 18370951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of leakage flow in a shrouded centrifugal blood pump.
    Teo JB; Chan WK; Wong YW
    Artif Organs; 2010 Sep; 34(9):788-91. PubMed ID: 20883397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Impeller Geometry on Lift-Off Characteristics and Rotational Attitude in a Monopivot Centrifugal Blood Pump.
    Nishida M; Nakayama K; Sakota D; Kosaka R; Maruyama O; Kawaguchi Y; Kuwana K; Yamane T
    Artif Organs; 2016 Jun; 40(6):E89-E101. PubMed ID: 27097844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of the leakage flow of the hydrodynamically levitated centrifugal blood pump for extracorporeal mechanical circulatory support systems.
    Tsukiya T; Nishinaka T
    J Artif Organs; 2023 Sep; 26(3):176-183. PubMed ID: 35907152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.