BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22747968)

  • 1. Stability of bisphenol A (BPA) in oil-in water emulsions under riboflavin photosensitization.
    Jang EY; Park CU; Kim MJ; Lee J
    J Food Sci; 2012 Aug; 77(8):C844-8. PubMed ID: 22747968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of metal chelator, sodium azide, and superoxide dismutase on the oxidative stability in riboflavin-photosensitized oil-in-water emulsion systems.
    Lee J; Decker EA
    J Agric Food Chem; 2011 Jun; 59(11):6271-6. PubMed ID: 21542578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of riboflavin photosensitization on the degradation of bisphenol A (BPA) in model and real-food systems.
    Ha DO; Jeong MK; Park CU; Park MH; Chang PS; Lee JH
    J Food Sci; 2009 Jun; 74(5):C380-4. PubMed ID: 19646031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prooxidative and antioxidative properties of β-carotene in chlorophyll and riboflavin photosensitized oil-in-water emulsions.
    Park J; Kim TS; Kim MJ; Lee J
    Food Chem; 2013 Sep; 140(1-2):255-61. PubMed ID: 23578641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of riboflavin photosensitization on daidzein and its photosensitized derivatives.
    Park C; Yeo J; Park M; Park JB; Lee J
    J Food Sci; 2010 Oct; 75(8):C659-66. PubMed ID: 21535482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative Stability in Oil-in-Water Emulsions with Quercetin or Rutin Under Iron Catalysis or Riboflavin Photosensitization.
    Yi B; Ka H; Kwon Y; Choi H; Kim S; Kim J; Kim MJ; Lee J
    J Food Sci; 2017 Apr; 82(4):890-896. PubMed ID: 28295328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic removal of organic pollutants in aqueous solution by Bi(4)Nb(x)Ta((1-x))O(8)I.
    Hu XY; Fan J; Zhang KL; Wang JJ
    Chemosphere; 2012 Jun; 87(10):1155-60. PubMed ID: 22386458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cu-TiO2 nanorods with enhanced ultraviolet- and visible-light photoactivity for bisphenol A degradation.
    Chiang LF; Doong RA
    J Hazard Mater; 2014 Jul; 277():84-92. PubMed ID: 24556011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photodegradation of bisphenol A and related compounds under natural-like conditions in the presence of riboflavin: kinetics, mechanism and photoproducts.
    Barbieri Y; Massad WA; Díaz DJ; Sanz J; Amat-Guerri F; García NA
    Chemosphere; 2008 Sep; 73(4):564-71. PubMed ID: 18649916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant Properties of Astaxanthin in Oil-in-Water Emulsions with Differently-Charged Emulsifiers Under Chlorophyll Photosensitization.
    Yi B; Kim MJ; Lee J
    J Food Sci; 2018 Mar; 83(3):589-596. PubMed ID: 29412454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ESR study of the singlet oxygen quenching and protective activity of Trolox on the photodecomposition of riboflavin and lumiflavin in aqueous buffer solutions.
    Jung MY; Min DB
    J Food Sci; 2009 Aug; 74(6):C449-55. PubMed ID: 19723181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of bisphenol A in water by the heterogeneous photo-Fenton.
    Jiang C; Xu Z; Guo Q; Zhuo Q
    Environ Technol; 2014; 35(5-8):966-72. PubMed ID: 24645480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of endocrine disrupting bisphenol A by 254 nm irradiation in different water matrices and effect on yeast cells.
    Neamţu M; Frimmel FH
    Water Res; 2006 Dec; 40(20):3745-50. PubMed ID: 17028063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic degradation of endocrine disruptor Bisphenol-A in the presence of prepared CexZn1-xO nanocomposites under irradiation of sunlight.
    Kamaraj M; Ranjith KS; Sivaraj R; Kumar RT; Abdul Salam H
    J Environ Sci (China); 2014 Nov; 26(11):2362-8. PubMed ID: 25458693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of isoflavone daidzein and genistein in riboflavin, chlorophyll b, or methylene blue photosensitization.
    Yang S; Lee S; Chung H; Lee J
    J Food Sci; 2008 Mar; 73(2):C100-5. PubMed ID: 18298713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions.
    Peng Z; Wu F; Deng N
    Environ Pollut; 2006 Dec; 144(3):840-6. PubMed ID: 16603296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant Properties of Aqueous Extract of Roasted Hulled Barley in Bulk Oil or Oil-in-Water Emulsion Matrix.
    Oh S; Kim MJ; Park KW; Lee JH
    J Food Sci; 2015 Nov; 80(11):C2382-8. PubMed ID: 26408834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A.
    Xiao X; Hao R; Liang M; Zuo X; Nan J; Li L; Zhang W
    J Hazard Mater; 2012 Sep; 233-234():122-30. PubMed ID: 22818177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ H(+)-mediated formation of singlet oxygen from NaBiO3 for oxidative degradation of bisphenol A without light irradiation: Efficiency, kinetics, and mechanism.
    Ding Y; Xia X; Ruan Y; Tang H
    Chemosphere; 2015 Dec; 141():80-6. PubMed ID: 26141554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosensitizing effect of riboflavin, lumiflavin, and lumichrome on the generation of volatiles in soy milk.
    Huang R; Kim HJ; Min DB
    J Agric Food Chem; 2006 Mar; 54(6):2359-64. PubMed ID: 16536619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.