These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22747968)

  • 1. Stability of bisphenol A (BPA) in oil-in water emulsions under riboflavin photosensitization.
    Jang EY; Park CU; Kim MJ; Lee J
    J Food Sci; 2012 Aug; 77(8):C844-8. PubMed ID: 22747968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of metal chelator, sodium azide, and superoxide dismutase on the oxidative stability in riboflavin-photosensitized oil-in-water emulsion systems.
    Lee J; Decker EA
    J Agric Food Chem; 2011 Jun; 59(11):6271-6. PubMed ID: 21542578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of riboflavin photosensitization on the degradation of bisphenol A (BPA) in model and real-food systems.
    Ha DO; Jeong MK; Park CU; Park MH; Chang PS; Lee JH
    J Food Sci; 2009 Jun; 74(5):C380-4. PubMed ID: 19646031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prooxidative and antioxidative properties of β-carotene in chlorophyll and riboflavin photosensitized oil-in-water emulsions.
    Park J; Kim TS; Kim MJ; Lee J
    Food Chem; 2013 Sep; 140(1-2):255-61. PubMed ID: 23578641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of riboflavin photosensitization on daidzein and its photosensitized derivatives.
    Park C; Yeo J; Park M; Park JB; Lee J
    J Food Sci; 2010 Oct; 75(8):C659-66. PubMed ID: 21535482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative Stability in Oil-in-Water Emulsions with Quercetin or Rutin Under Iron Catalysis or Riboflavin Photosensitization.
    Yi B; Ka H; Kwon Y; Choi H; Kim S; Kim J; Kim MJ; Lee J
    J Food Sci; 2017 Apr; 82(4):890-896. PubMed ID: 28295328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic removal of organic pollutants in aqueous solution by Bi(4)Nb(x)Ta((1-x))O(8)I.
    Hu XY; Fan J; Zhang KL; Wang JJ
    Chemosphere; 2012 Jun; 87(10):1155-60. PubMed ID: 22386458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cu-TiO2 nanorods with enhanced ultraviolet- and visible-light photoactivity for bisphenol A degradation.
    Chiang LF; Doong RA
    J Hazard Mater; 2014 Jul; 277():84-92. PubMed ID: 24556011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photodegradation of bisphenol A and related compounds under natural-like conditions in the presence of riboflavin: kinetics, mechanism and photoproducts.
    Barbieri Y; Massad WA; Díaz DJ; Sanz J; Amat-Guerri F; García NA
    Chemosphere; 2008 Sep; 73(4):564-71. PubMed ID: 18649916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant Properties of Astaxanthin in Oil-in-Water Emulsions with Differently-Charged Emulsifiers Under Chlorophyll Photosensitization.
    Yi B; Kim MJ; Lee J
    J Food Sci; 2018 Mar; 83(3):589-596. PubMed ID: 29412454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ESR study of the singlet oxygen quenching and protective activity of Trolox on the photodecomposition of riboflavin and lumiflavin in aqueous buffer solutions.
    Jung MY; Min DB
    J Food Sci; 2009 Aug; 74(6):C449-55. PubMed ID: 19723181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of bisphenol A in water by the heterogeneous photo-Fenton.
    Jiang C; Xu Z; Guo Q; Zhuo Q
    Environ Technol; 2014; 35(5-8):966-72. PubMed ID: 24645480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of endocrine disrupting bisphenol A by 254 nm irradiation in different water matrices and effect on yeast cells.
    Neamţu M; Frimmel FH
    Water Res; 2006 Dec; 40(20):3745-50. PubMed ID: 17028063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic degradation of endocrine disruptor Bisphenol-A in the presence of prepared CexZn1-xO nanocomposites under irradiation of sunlight.
    Kamaraj M; Ranjith KS; Sivaraj R; Kumar RT; Abdul Salam H
    J Environ Sci (China); 2014 Nov; 26(11):2362-8. PubMed ID: 25458693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of isoflavone daidzein and genistein in riboflavin, chlorophyll b, or methylene blue photosensitization.
    Yang S; Lee S; Chung H; Lee J
    J Food Sci; 2008 Mar; 73(2):C100-5. PubMed ID: 18298713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions.
    Peng Z; Wu F; Deng N
    Environ Pollut; 2006 Dec; 144(3):840-6. PubMed ID: 16603296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant Properties of Aqueous Extract of Roasted Hulled Barley in Bulk Oil or Oil-in-Water Emulsion Matrix.
    Oh S; Kim MJ; Park KW; Lee JH
    J Food Sci; 2015 Nov; 80(11):C2382-8. PubMed ID: 26408834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A.
    Xiao X; Hao R; Liang M; Zuo X; Nan J; Li L; Zhang W
    J Hazard Mater; 2012 Sep; 233-234():122-30. PubMed ID: 22818177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ H(+)-mediated formation of singlet oxygen from NaBiO3 for oxidative degradation of bisphenol A without light irradiation: Efficiency, kinetics, and mechanism.
    Ding Y; Xia X; Ruan Y; Tang H
    Chemosphere; 2015 Dec; 141():80-6. PubMed ID: 26141554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosensitizing effect of riboflavin, lumiflavin, and lumichrome on the generation of volatiles in soy milk.
    Huang R; Kim HJ; Min DB
    J Agric Food Chem; 2006 Mar; 54(6):2359-64. PubMed ID: 16536619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.