BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22748055)

  • 1. TAPDANCE: an automated tool to identify and annotate transposon insertion CISs and associations between CISs from next generation sequence data.
    Sarver AL; Erdman J; Starr T; Largaespada DA; Silverstein KA
    BMC Bioinformatics; 2012 Jun; 13():154. PubMed ID: 22748055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmicron: accurate prediction of insertion probabilities improves detection of cancer driver genes from transposon mutagenesis screens.
    Bredthauer C; Fischer A; Ahari AJ; Cao X; Weber J; Rad L; Rad R; Wachutka L; Gagneur J
    Nucleic Acids Res; 2023 Feb; 51(4):e21. PubMed ID: 36617985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA sequencing of Sleeping Beauty transposon-induced tumors detects transposon-RNA fusions in forward genetic cancer screens.
    Temiz NA; Moriarity BS; Wolf NK; Riordan JD; Dupuy AJ; Largaespada DA; Sarver AL
    Genome Res; 2016 Jan; 26(1):119-29. PubMed ID: 26553456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequencing methods and datasets to improve functional interpretation of sleeping beauty mutagenesis screens.
    Riordan JD; Drury LJ; Smith RP; Brett BT; Rogers LM; Scheetz TE; Dupuy AJ
    BMC Genomics; 2014 Dec; 15(1):1150. PubMed ID: 25526783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screens.
    de Ridder J; Uren A; Kool J; Reinders M; Wessels L
    PLoS Comput Biol; 2006 Dec; 2(12):e166. PubMed ID: 17154714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ESSENTIALS: software for rapid analysis of high throughput transposon insertion sequencing data.
    Zomer A; Burghout P; Bootsma HJ; Hermans PW; van Hijum SA
    PLoS One; 2012; 7(8):e43012. PubMed ID: 22900082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reproducible and accessible analysis of transposon insertion sequencing in Galaxy for qualitative essentiality analyses.
    Larivière D; Wickham L; Keiler K; Nekrutenko A;
    BMC Microbiol; 2021 Jun; 21(1):168. PubMed ID: 34090324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Wide Mutagenesis in Borrelia burgdorferi.
    Lin T; Gao L
    Methods Mol Biol; 2018; 1690():201-223. PubMed ID: 29032547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ITIS, a bioinformatics tool for accurate identification of transposon insertion sites using next-generation sequencing data.
    Jiang C; Chen C; Huang Z; Liu R; Verdier J
    BMC Bioinformatics; 2015 Mar; 16(1):72. PubMed ID: 25887332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying transposon insertions and their effects from RNA-sequencing data.
    de Ruiter JR; Kas SM; Schut E; Adams DJ; Koudijs MJ; Wessels LFA; Jonkers J
    Nucleic Acids Res; 2017 Jul; 45(12):7064-7077. PubMed ID: 28575524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised Learning Approach for Comparing Multiple Transposon Insertion Sequencing Studies.
    Hubbard TP; D'Gama JD; Billings G; Davis BM; Waldor MK
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30787116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New methods for finding common insertion sites and co-occurring common insertion sites in transposon- and virus-based genetic screens.
    Bergemann TL; Starr TK; Yu H; Steinbach M; Erdmann J; Chen Y; Cormier RT; Largaespada DA; Silverstein KA
    Nucleic Acids Res; 2012 May; 40(9):3822-33. PubMed ID: 22241771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining common insertion sites based on retroviral insertion distribution across tumors.
    Chen F; Li Z; Chen YP
    Comput Biol Chem; 2014 Aug; 51():83-92. PubMed ID: 24675070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Jitterbug: somatic and germline transposon insertion detection at single-nucleotide resolution.
    Hénaff E; Zapata L; Casacuberta JM; Ossowski S
    BMC Genomics; 2015 Oct; 16():768. PubMed ID: 26459856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEAseq-based identification of 35,696 Dissociation insertional mutations facilitates functional genomic studies in maize.
    Lyu M; Liu H; Waititu JK; Sun Y; Wang H; Fu J; Chen Y; Liu J; Ku L; Cheng X
    J Genet Genomics; 2021 Nov; 48(11):961-971. PubMed ID: 34654681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide sequence transposon insertion sites and analyze the essential genes of Brucella melitensis.
    De Y; Dong C; Cao Y; Wang X; Yang X; Wang N; Zhang C; Wang Z; Lyu Y; Wu Q
    Microb Pathog; 2017 Nov; 112():97-102. PubMed ID: 28888882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide transposon screening and quantitative insertion site sequencing for cancer gene discovery in mice.
    Friedrich MJ; Rad L; Bronner IF; Strong A; Wang W; Weber J; Mayho M; Ponstingl H; Engleitner T; Grove C; Pfaus A; Saur D; Cadiñanos J; Quail MA; Vassiliou GS; Liu P; Bradley A; Rad R
    Nat Protoc; 2017 Feb; 12(2):289-309. PubMed ID: 28079877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Cancer Genes Based on De Novo Transposon Insertion Site Analysis Using RNA and DNA Sequencing.
    Sarver A
    Methods Mol Biol; 2019; 1907():73-79. PubMed ID: 30542991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A collection of sequenced and mapped Ds transposon insertion sites in Arabidopsis thaliana.
    Raina S; Mahalingam R; Chen F; Fedoroff N
    Plant Mol Biol; 2002 Sep; 50(1):93-110. PubMed ID: 12139012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clonal expansion analysis of transposon insertions by high-throughput sequencing identifies candidate cancer genes in a PiggyBac mutagenesis screen.
    Friedel RH; Friedel CC; Bonfert T; Shi R; Rad R; Soriano P
    PLoS One; 2013; 8(8):e72338. PubMed ID: 23940809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.