BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 22748056)

  • 1. Verapamil- and state-dependent effect of 2-aminoethylmethanethiosulphonate (MTSEA) on hK(v)1.3 channels.
    Nikouee A; Janbein M; Grissmer S
    Br J Pharmacol; 2012 Nov; 167(6):1378-88. PubMed ID: 22748056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of verapamil on the action of methanethiosulfonate reagents on human voltage-gated K(v)1.3 channels: implications for the C-type inactivated state.
    Schmid SI; Grissmer S
    Br J Pharmacol; 2011 Jun; 163(3):662-74. PubMed ID: 21306584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic Aspects of Verapamil Binding (On-Rate) on Wild-Type and Six hKv1.3 Mutant Channels.
    Diesch AK; Grissmer S
    Cell Physiol Biochem; 2017; 44(1):172-184. PubMed ID: 29131061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of K+ and Rb+ on the action of verapamil on a voltage-gated K+ channel, hKv1.3: implications for a second open state?
    Kuras Z; Grissmer S
    Br J Pharmacol; 2009 Jul; 157(5):757-68. PubMed ID: 19371328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a deep pore activation gate in small conductance Ca2+-activated K+ channels.
    Bruening-Wright A; Lee WS; Adelman JP; Maylie J
    J Gen Physiol; 2007 Dec; 130(6):601-10. PubMed ID: 17998394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of the activation gate for small conductance Ca2+-activated K+ channels.
    Bruening-Wright A; Schumacher MA; Adelman JP; Maylie J
    J Neurosci; 2002 Aug; 22(15):6499-506. PubMed ID: 12151529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow-inactivation induced conformational change in domain 2-segment 6 of cardiac Na+ channel.
    O'Reilly JP; Shockett PE
    Biochem Biophys Res Commun; 2006 Jun; 345(1):59-66. PubMed ID: 16674915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substituted cysteine scanning in D1-S6 of the sodium channel hNav1.4 alters kinetics and structural interactions of slow inactivation.
    Beard JM; Shockett PE; O'Reilly JP
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183129. PubMed ID: 31738900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural determinants of the closed KCa3.1 channel pore in relation to channel gating: results from a substituted cysteine accessibility analysis.
    Klein H; Garneau L; Banderali U; Simoes M; Parent L; Sauvé R
    J Gen Physiol; 2007 Apr; 129(4):299-315. PubMed ID: 17353352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residue-specific effects on slow inactivation at V787 in D2-S6 of Na(v)1.4 sodium channels.
    O'Reilly JP; Wang SY; Wang GK
    Biophys J; 2001 Oct; 81(4):2100-11. PubMed ID: 11566781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cysteine scan of the inner vestibule of cyclic nucleotide-gated channels reveals architecture and rearrangement of the pore.
    Flynn GE; Zagotta WN
    J Gen Physiol; 2003 Jun; 121(6):563-82. PubMed ID: 12771192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time- and state-dependent effects of methanethiosulfonate ethylammonium (MTSEA) exposure differ between heart and skeletal muscle voltage-gated Na(+) channels.
    O'Reilly JP; Shockett PE
    Biochim Biophys Acta; 2012 Mar; 1818(3):443-7. PubMed ID: 22155680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Block of the lymphocyte K(+) channel mKv1.3 by the phenylalkylamine verapamil: kinetic aspects of block and disruption of accumulation of block by a single point mutation.
    Röbe RJ; Grissmer S
    Br J Pharmacol; 2000 Dec; 131(7):1275-84. PubMed ID: 11090098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexibility of the Kir6.2 inward rectifier K(+) channel pore.
    Loussouarn G; Phillips LR; Masia R; Rose T; Nichols CG
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):4227-32. PubMed ID: 11274446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An external determinant in the S5-P linker of the pacemaker (HCN) channel identified by sulfhydryl modification.
    Xue T; Li RA
    J Biol Chem; 2002 Nov; 277(48):46233-42. PubMed ID: 12351622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular rearrangements in S6 during slow inactivation in Shaker-IR potassium channels.
    Szanto TG; Papp F; Zakany F; Varga Z; Deutsch C; Panyi G
    J Gen Physiol; 2023 Jul; 155(7):. PubMed ID: 37212728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topology of the P segments in the sodium channel pore revealed by cysteine mutagenesis.
    Yamagishi T; Janecki M; Marban E; Tomaselli GF
    Biophys J; 1997 Jul; 73(1):195-204. PubMed ID: 9199784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charybdotoxin and margatoxin acting on the human voltage-gated potassium channel hKv1.3 and its H399N mutant: an experimental and computational comparison.
    Nikouee A; Khabiri M; Grissmer S; Ettrich R
    J Phys Chem B; 2012 May; 116(17):5132-40. PubMed ID: 22490327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rosiglitazone inhibits Kv4.3 potassium channels by open-channel block and acceleration of closed-state inactivation.
    Jeong I; Choi BH; Hahn SJ
    Br J Pharmacol; 2011 Jun; 163(3):510-20. PubMed ID: 21232039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A structural link between inactivation and block of a K+ channel.
    Ader C; Schneider R; Hornig S; Velisetty P; Wilson EM; Lange A; Giller K; Ohmert I; Martin-Eauclaire MF; Trauner D; Becker S; Pongs O; Baldus M
    Nat Struct Mol Biol; 2008 Jun; 15(6):605-12. PubMed ID: 18488040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.