These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 22748176)

  • 21. An evaluation and comparison of three commonly used statistical models for automatic detection of outbreaks in epidemiological data of communicable diseases.
    Rolfhamre P; Ekdahl K
    Epidemiol Infect; 2006 Aug; 134(4):863-71. PubMed ID: 16371181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A spatio-temporal absorbing state model for disease and syndromic surveillance.
    Heaton MJ; Banks DL; Zou J; Karr AF; Datta G; Lynch J; Vera F
    Stat Med; 2012 Aug; 31(19):2123-36. PubMed ID: 22388709
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiscale detection of localized anomalous structure in aggregate disease incidence data.
    Louie MM; Kolaczyk ED
    Stat Med; 2006 Mar; 25(5):787-810. PubMed ID: 16453373
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Filling gaps in notification data: a model-based approach applied to travel related campylobacteriosis cases in New Zealand.
    Amene E; Horn B; Pirie R; Lake R; Döpfer D
    BMC Infect Dis; 2016 Sep; 16(1):475. PubMed ID: 27600394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boundary detection in disease mapping studies.
    Lee D; Mitchell R
    Biostatistics; 2012 Jul; 13(3):415-26. PubMed ID: 22045911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Campylobacteriosis in Poland in 2010].
    Sadkowska-Todys M; Kucharczyk B
    Przegl Epidemiol; 2012; 66(2):255-8. PubMed ID: 23101213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling spatial frailties in survival analysis of cucurbit downy mildew epidemics.
    Ojiambo PS; Kang EL
    Phytopathology; 2013 Mar; 103(3):216-27. PubMed ID: 23190114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated detection of infectious disease outbreaks: hierarchical time series models.
    Heisterkamp SH; Dekkers AL; Heijne JC
    Stat Med; 2006 Dec; 25(24):4179-96. PubMed ID: 16958149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bayesian temporal source attribution of foodborne zoonoses: Campylobacter in Finland and Norway.
    Ranta J; Matjushin D; Virtanen T; Kuusi M; Viljugrein H; Hofshagen M; Hakkinen M
    Risk Anal; 2011 Jul; 31(7):1156-71. PubMed ID: 21231942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A cluster model for space-time disease counts.
    Yan P; Clayton MK
    Stat Med; 2006 Mar; 25(5):867-81. PubMed ID: 16453380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metapopulation dynamics and determinants of H5N1 highly pathogenic avian influenza outbreaks in Indonesian poultry.
    Farnsworth ML; Fitchett S; Hidayat MM; Lockhart C; Hamilton-West C; Brum E; Angus S; Poermadjaja B; Pinto J
    Prev Vet Med; 2011 Dec; 102(3):206-17. PubMed ID: 21890223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular-based surveillance of campylobacteriosis in New Zealand--from source attribution to genomic epidemiology.
    Muellner P; Pleydell E; Pirie R; Baker MG; Campbell D; Carter PE; French NP
    Euro Surveill; 2013 Jan; 18(3):. PubMed ID: 23351655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An integrated approach for fusion of environmental and human health data for disease surveillance.
    Burkom HS; Ramac-Thomas L; Babin S; Holtry R; Mnatsakanyan Z; Yund C
    Stat Med; 2011 Feb; 30(5):470-9. PubMed ID: 21290403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Incubation period for campylobacteriosis and its importance in the estimation of incidence related to travel.
    Horn BJ; Lake RJ
    Euro Surveill; 2013 Oct; 18(40):. PubMed ID: 24128700
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Residential address errors in public health surveillance data: a description and analysis of the impact on geocoding.
    Zinszer K; Jauvin C; Verma A; Bedard L; Allard R; Schwartzman K; de Montigny L; Charland K; Buckeridge DL
    Spat Spatiotemporal Epidemiol; 2010 Jul; 1(2-3):163-8. PubMed ID: 22749471
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The human health burden of foodborne infections caused by Campylobacter, Salmonella, and Vibrio parahaemolyticus in Miyagi Prefecture, Japan.
    Kubota K; Iwasaki E; Inagaki S; Nokubo T; Sakurai Y; Komatsu M; Toyofuku H; Kasuga F; Angulo FJ; Morikawa K
    Foodborne Pathog Dis; 2008 Oct; 5(5):641-8. PubMed ID: 18851675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatio-temporal analyses of highly pathogenic avian influenza H5N1 outbreaks in the Mekong River Delta, Vietnam, 2009.
    Minh PQ; Stevenson MA; Jewell C; French N; Schauer B
    Spat Spatiotemporal Epidemiol; 2011 Mar; 2(1):49-57. PubMed ID: 22749548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flies, fingers, fomites, and food. Campylobacteriosis in New Zealand--food-associated rather than food-borne.
    Nelson W; Harris B
    N Z Med J; 2006 Aug; 119(1240):U2128. PubMed ID: 16924279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased information on waterborne outbreaks through efficient notification system enforces actions towards safe drinking water.
    Zacheus O; Miettinen IT
    J Water Health; 2011 Dec; 9(4):763-72. PubMed ID: 22048435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Putative household outbreaks of campylobacteriosis typically comprise single MLST genotypes.
    Rotariu O; Smith-Palmer A; Cowden J; Bessell PR; Innocent GT; Reid SW; Matthews L; Dallas J; Ogden ID; Forbes KJ; Strachan NJ
    Epidemiol Infect; 2010 Dec; 138(12):1744-7. PubMed ID: 20587120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.