These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 22749212)
21. Improving spatial prediction of health risk assessment for Hg, As, Cu, and Pb in soil based on land-use regression. Chen D; Chen H; Zhao J; Xu Z; Li W; Xu M Environ Geochem Health; 2020 May; 42(5):1415-1428. PubMed ID: 31776887 [TBL] [Abstract][Full Text] [Related]
22. The effect of soil abatement on blood lead levels in children living near a former smelting and milling operation. Lanphear BP; Succop P; Roda S; Henningsen G Public Health Rep; 2003; 118(2):83-91. PubMed ID: 12690062 [TBL] [Abstract][Full Text] [Related]
23. Residential arsenic and lead levels in an agricultural community with a history of lead arsenate use. Wolz S; Fenske RA; Simcox NJ; Palcisko G; Kissel JC Environ Res; 2003 Nov; 93(3):293-300. PubMed ID: 14615240 [TBL] [Abstract][Full Text] [Related]
24. Multiple sclerosis incidence associated with the soil lead and arsenic concentrations in Taiwan. Tsai CP; Lee CT PLoS One; 2013; 8(6):e65911. PubMed ID: 23799061 [TBL] [Abstract][Full Text] [Related]
25. Dietary heavy metal exposure of Finnish children of 3 to 6 years. Suomi J; Tuominen P; Niinistö S; Virtanen SM; Savela K Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Jul; 35(7):1305-1315. PubMed ID: 29843572 [TBL] [Abstract][Full Text] [Related]
26. Assessment of bioaccessibility and exposure risk of arsenic and lead in urban soils of Guangzhou City, China. Lu Y; Yin W; Huang L; Zhang G; Zhao Y Environ Geochem Health; 2011 Apr; 33(2):93-102. PubMed ID: 20524051 [TBL] [Abstract][Full Text] [Related]
27. The distributions, contamination status, and health risk assessments of mercury and arsenic in the soils from the Yellow River Delta of China. Ge M; Liu G; Liu H; Yuan Z; Liu Y Environ Sci Pollut Res Int; 2019 Dec; 26(34):35094-35106. PubMed ID: 31679141 [TBL] [Abstract][Full Text] [Related]
28. Collateral benefits and hidden hazards of soil arsenic during abatement assessment of residential lead hazards. Elless MP; Ferguson BW; Bray CA; Patch S; Mielke H; Blaylock MJ Environ Pollut; 2008 Nov; 156(1):20-8. PubMed ID: 18328607 [TBL] [Abstract][Full Text] [Related]
29. Autism spectrum disorder prevalence and associations with air concentrations of lead, mercury, and arsenic. Dickerson AS; Rahbar MH; Bakian AV; Bilder DA; Harrington RA; Pettygrove S; Kirby RS; Durkin MS; Han I; Moyé LA; Pearson DA; Wingate MS; Zahorodny WM Environ Monit Assess; 2016 Jul; 188(7):407. PubMed ID: 27301968 [TBL] [Abstract][Full Text] [Related]
30. Contamination assessment of mercury, lead, cadmium and arsenic in surface sediments of Chabahar Bay. Molamohyeddin N; Ghafourian H; Sadatipour SM Mar Pollut Bull; 2017 Nov; 124(1):521-525. PubMed ID: 28739103 [TBL] [Abstract][Full Text] [Related]
31. Legacy lead arsenate soil contamination at childcare centers in the Yakima Valley, Central Washington, USA. Durkee J; Bartrem C; Möller G Chemosphere; 2017 Feb; 168():1126-1135. PubMed ID: 27823776 [TBL] [Abstract][Full Text] [Related]
32. Spatial distribution and temporal trends of mercury and arsenic in remote timberline coniferous forests, eastern of the Tibet Plateau, China. Tang R; Wang H; Luo J; Sun S; Gong Y; She J; Chen Y; Dandan Y; Zhou J Environ Sci Pollut Res Int; 2015 Aug; 22(15):11658-68. PubMed ID: 25850747 [TBL] [Abstract][Full Text] [Related]
33. Spatial distribution of heavy metal concentrations in peri-urban soils in eastern China. Li S; Yang L; Chen L; Zhao F; Sun L Environ Sci Pollut Res Int; 2019 Jan; 26(2):1615-1627. PubMed ID: 30446913 [TBL] [Abstract][Full Text] [Related]
34. Human exposure to arsenic, cadmium, mercury, and lead from foods in Catalonia, Spain: temporal trend. Martorell I; Perelló G; Martí-Cid R; Llobet JM; Castell V; Domingo JL Biol Trace Elem Res; 2011 Sep; 142(3):309-22. PubMed ID: 20676798 [TBL] [Abstract][Full Text] [Related]
35. Heavy metals in the Arctic: Distribution and enrichment of five metals in Alaskan soils. Perryman CR; Wirsing J; Bennett KA; Brennick O; Perry AL; Williamson N; Ernakovich JG PLoS One; 2020; 15(6):e0233297. PubMed ID: 32492035 [TBL] [Abstract][Full Text] [Related]
36. [Assessment of the health risk of a residential area contaminated with arsenic and lead. Biological monitoring in Mundelstrup]. Christensen JM; Rasmussen K; Kjeldsen NJ Ugeskr Laeger; 1991 Sep; 153(37):2564-8. PubMed ID: 1949259 [TBL] [Abstract][Full Text] [Related]
37. Is there a relationship between tea intake and maternal whole blood heavy metal concentrations? Colapinto CK; Arbuckle TE; Dubois L; Fraser W J Expo Sci Environ Epidemiol; 2016 Sep; 26(5):503-9. PubMed ID: 26732378 [TBL] [Abstract][Full Text] [Related]
38. Arsenic levels in the soil and risk of birth defects: a population-based case-control study using GIS technology. Wu J; Chen G; Liao Y; Song X; Pei L; Wang J; Zheng X J Environ Health; 2011 Nov; 74(4):20-5. PubMed ID: 22187854 [TBL] [Abstract][Full Text] [Related]
39. Derivation and validation of thresholds of cadmium, chromium, lead, mercury and arsenic for safe rice production in paddy soil. Gao J; Ye X; Wang X; Jiang Y; Li D; Ma Y; Sun B Ecotoxicol Environ Saf; 2021 Sep; 220():112404. PubMed ID: 34111660 [TBL] [Abstract][Full Text] [Related]
40. Physiological response of spinach to toxic heavy metal stress. Zubair M; Khan QU; Mirza N; Sarwar R; Khan AA; Baloch MS; Fahad S; Shah AN Environ Sci Pollut Res Int; 2019 Nov; 26(31):31667-31674. PubMed ID: 31485949 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]