BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22749723)

  • 1. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces.
    Biganzoli L; Gorla L; Nessi S; Grosso M
    Waste Manag; 2012 Dec; 32(12):2266-72. PubMed ID: 22749723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aluminium recovery from waste incineration bottom ash, and its oxidation level.
    Biganzoli L; Grosso M
    Waste Manag Res; 2013 Sep; 31(9):954-9. PubMed ID: 23831779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery and distribution of incinerated aluminum packaging waste.
    Hu Y; Bakker MC; de Heij PG
    Waste Manag; 2011 Dec; 31(12):2422-30. PubMed ID: 21862306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aluminium alloys in municipal solid waste incineration bottom ash.
    Hu Y; Rem P
    Waste Manag Res; 2009 May; 27(3):251-7. PubMed ID: 19423581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aluminium recovery vs. hydrogen production as resource recovery options for fine MSWI bottom ash fraction.
    Biganzoli L; Ilyas A; Praagh Mv; Persson KM; Grosso M
    Waste Manag; 2013 May; 33(5):1174-81. PubMed ID: 23453355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation and waste-to-energy output of aluminium waste packaging during incineration: A laboratory study.
    López FA; Román CP; García-Díaz I; Alguacil FJ
    Waste Manag; 2015 Sep; 43():162-7. PubMed ID: 26148645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash.
    Allegrini E; Vadenbo C; Boldrin A; Astrup TF
    J Environ Manage; 2015 Mar; 151():132-43. PubMed ID: 25555136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray fluorescence sorting of non-ferrous metal fractions from municipal solid waste incineration bottom ash processing depending on particle surface properties.
    Pfandl K; Küppers B; Scheiber S; Stockinger G; Holzer J; Pomberger R; Antrekowitsch H; Vollprecht D
    Waste Manag Res; 2020 Feb; 38(2):111-121. PubMed ID: 31621535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan.
    Jung CH; Matsuto T; Tanaka N; Okada T
    Waste Manag; 2004; 24(4):381-91. PubMed ID: 15081066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristic properties and recyclability of the aluminium fraction of MSWI bottom ash.
    Gökelma M; Vallejo-Olivares A; Tranell G
    Waste Manag; 2021 Jul; 130():65-73. PubMed ID: 34051605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monotonic aspects of the mechanical behaviour of bottom ash from municipal solid waste incineration and its potential use for road construction.
    Becquart F; Bernard F; Abriak NE; Zentar R
    Waste Manag; 2009 Apr; 29(4):1320-9. PubMed ID: 18977129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavior of metals in ash melting and gasification-melting of municipal solid waste (MSW).
    Jung CH; Matsuto T; Tanaka N
    Waste Manag; 2005; 25(3):301-10. PubMed ID: 15823745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LCA of recycling aluminium incineration bottom ash, dross and shavings in a rotary furnace and environmental benefits of salt-slag valorisation.
    Vallejo Olivares A; Pastor-Vallés E; Pettersen JB; Tranell G
    Waste Manag; 2024 Jun; 182():11-20. PubMed ID: 38626501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete determination of the material composition of municipal solid waste incineration bottom ash.
    Huber F; Blasenbauer D; Aschenbrenner P; Fellner J
    Waste Manag; 2020 Feb; 102():677-685. PubMed ID: 31790926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of municipal waste incineration bottom ash and water treatment sludge to water permeable pavement materials.
    Lin CF; Wu CH; Ho HM
    Waste Manag; 2006; 26(9):970-8. PubMed ID: 16293405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precious metals and rare earth elements in municipal solid waste--sources and fate in a Swiss incineration plant.
    Morf LS; Gloor R; Haag O; Haupt M; Skutan S; Di Lorenzo F; Böni D
    Waste Manag; 2013 Mar; 33(3):634-44. PubMed ID: 23085306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of bottom ash in municipal solid waste incinerators for its use in road base.
    Forteza R; Far M; Seguí C; Cerdá V
    Waste Manag; 2004; 24(9):899-909. PubMed ID: 15504667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes.
    Allegrini E; Maresca A; Olsson ME; Holtze MS; Boldrin A; Astrup TF
    Waste Manag; 2014 Sep; 34(9):1627-36. PubMed ID: 24889793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the characteristics of bottom and fly ashes generated from various incineration processes.
    Chang FY; Wey MY
    J Hazard Mater; 2006 Dec; 138(3):594-603. PubMed ID: 16839684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.