These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 22750407)
1. Two-layered dissolving microneedles formulated with intermediate-acting insulin. Ito Y; Hirono M; Fukushima K; Sugioka N; Takada K Int J Pharm; 2012 Oct; 436(1-2):387-93. PubMed ID: 22750407 [TBL] [Abstract][Full Text] [Related]
2. Feasibility of microneedles for percutaneous absorption of insulin. Ito Y; Hagiwara E; Saeki A; Sugioka N; Takada K Eur J Pharm Sci; 2006 Sep; 29(1):82-8. PubMed ID: 16828268 [TBL] [Abstract][Full Text] [Related]
3. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. Liu S; Jin MN; Quan YS; Kamiyama F; Katsumi H; Sakane T; Yamamoto A J Control Release; 2012 Aug; 161(3):933-41. PubMed ID: 22634072 [TBL] [Abstract][Full Text] [Related]
4. Transdermal insulin application system with dissolving microneedles. Ito Y; Nakahigashi T; Yoshimoto N; Ueda Y; Hamasaki N; Takada K Diabetes Technol Ther; 2012 Oct; 14(10):891-9. PubMed ID: 23013202 [TBL] [Abstract][Full Text] [Related]
5. Pharmacokinetic and pharmacodynamic evaluation of insulin dissolving microneedles in dogs. Fukushima K; Yamazaki T; Hasegawa R; Ito Y; Sugioka N; Takada K Diabetes Technol Ther; 2010 Jun; 12(6):465-74. PubMed ID: 20470231 [TBL] [Abstract][Full Text] [Related]
6. Droplet-born air blowing: novel dissolving microneedle fabrication. Kim JD; Kim M; Yang H; Lee K; Jung H J Control Release; 2013 Sep; 170(3):430-6. PubMed ID: 23742882 [TBL] [Abstract][Full Text] [Related]
8. Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats. Ling MH; Chen MC Acta Biomater; 2013 Nov; 9(11):8952-61. PubMed ID: 23816646 [TBL] [Abstract][Full Text] [Related]
9. Novel lyophilized hydrogel patches for convenient and effective administration of microneedle-mediated insulin delivery. Qiu Y; Qin G; Zhang S; Wu Y; Xu B; Gao Y Int J Pharm; 2012 Nov; 437(1-2):51-6. PubMed ID: 22842625 [TBL] [Abstract][Full Text] [Related]
10. Controlled release of insulin from self-assembling nanofiber hydrogel, PuraMatrix™: application for the subcutaneous injection in rats. Nishimura A; Hayakawa T; Yamamoto Y; Hamori M; Tabata K; Seto K; Shibata N Eur J Pharm Sci; 2012 Jan; 45(1-2):1-7. PubMed ID: 22064453 [TBL] [Abstract][Full Text] [Related]
11. Dissolving microneedles to obtain rapid local anesthetic effect of lidocaine at skin tissue. Ito Y; Ohta J; Imada K; Akamatsu S; Tsuchida N; Inoue G; Inoue N; Takada K J Drug Target; 2013 Sep; 21(8):770-5. PubMed ID: 23808605 [TBL] [Abstract][Full Text] [Related]
12. A lecithin-based microemulsion of rh-insulin with aprotinin for oral administration: Investigation of hypoglycemic effects in non-diabetic and STZ-induced diabetic rats. Cilek A; Celebi N; Tirnaksiz F; Tay A Int J Pharm; 2005 Jul; 298(1):176-85. PubMed ID: 15950411 [TBL] [Abstract][Full Text] [Related]
13. Intramuscular versus subcutaneous injection of soluble and lispro insulin: comparison of metabolic effects in healthy subjects. Rave K; Heise T; Weyer C; Herrnberger J; Bender R; Hirschberger S; Heinemann L Diabet Med; 1998 Sep; 15(9):747-51. PubMed ID: 9737803 [TBL] [Abstract][Full Text] [Related]
14. Comparison of pharmacokinetic and pharmacodynamic properties of single-dose oral insulin spray and subcutaneous insulin injection in healthy subjects using the euglycemic clamp technique. Cernea S; Kidron M; Wohlgelernter J; Modi P; Raz I Clin Ther; 2004 Dec; 26(12):2084-91. PubMed ID: 15823772 [TBL] [Abstract][Full Text] [Related]
15. Two-layered dissolving microneedles for percutaneous delivery of sumatriptan in rats. Ito Y; Kashiwara S; Fukushima K; Takada K Drug Dev Ind Pharm; 2011 Dec; 37(12):1387-93. PubMed ID: 21545233 [TBL] [Abstract][Full Text] [Related]
16. Incidence of low bioavailability of leuprolide acetate after percutaneous administration to rats by dissolving microneedles. Ito Y; Murano H; Hamasaki N; Fukushima K; Takada K Int J Pharm; 2011 Apr; 407(1-2):126-31. PubMed ID: 21277965 [TBL] [Abstract][Full Text] [Related]
17. Relationship between drug effects and particle size of insulin-loaded bioadhesive microspheres. Pan Y; Zheng JM; Zhao HY; Li YJ; Xu H; Wei G Acta Pharmacol Sin; 2002 Nov; 23(11):1051-6. PubMed ID: 12421485 [TBL] [Abstract][Full Text] [Related]
18. Potential use of gamma-cyclodextrin polypseudorotaxane hydrogels as an injectable sustained release system for insulin. Abu Hashim II; Higashi T; Anno T; Motoyama K; Abd-ElGawad AE; El-Shabouri MH; Borg TM; Arima H Int J Pharm; 2010 Jun; 392(1-2):83-91. PubMed ID: 20298768 [TBL] [Abstract][Full Text] [Related]
19. [In vitro release kinetics and hypoglycemic effect on diabetic rats after oral administration of insulin loaded nanoparticles]. Zhang Q; Ding J; Yie G; Wei S Yao Xue Xue Bao; 1998; 33(2):152-6. PubMed ID: 11938952 [TBL] [Abstract][Full Text] [Related]
20. Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: Oral delivery using pH-responsive nanoparticles vs. subcutaneous injection. Sonaje K; Lin KJ; Wey SP; Lin CK; Yeh TH; Nguyen HN; Hsu CW; Yen TC; Juang JH; Sung HW Biomaterials; 2010 Sep; 31(26):6849-58. PubMed ID: 20619787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]