These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 22750529)
1. Oxidative burden and mitochondrial dysfunction in a mouse model of Rett syndrome. Grosser E; Hirt U; Janc OA; Menzfeld C; Fischer M; Kempkes B; Vogelgesang S; Manzke TU; Opitz L; Salinas-Riester G; Müller M Neurobiol Dis; 2012 Oct; 48(1):102-14. PubMed ID: 22750529 [TBL] [Abstract][Full Text] [Related]
2. Increased Mitochondrial Mass and Cytosolic Redox Imbalance in Hippocampal Astrocytes of a Mouse Model of Rett Syndrome: Subcellular Changes Revealed by Ratiometric Imaging of JC-1 and roGFP1 Fluorescence. Bebensee DF; Can K; Müller M Oxid Med Cell Longev; 2017; 2017():3064016. PubMed ID: 28894505 [TBL] [Abstract][Full Text] [Related]
3. Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Asaka Y; Jugloff DG; Zhang L; Eubanks JH; Fitzsimonds RM Neurobiol Dis; 2006 Jan; 21(1):217-27. PubMed ID: 16087343 [TBL] [Abstract][Full Text] [Related]
4. Impaired hippocampal Ca2+ homeostasis and concomitant K+ channel dysfunction in a mouse model of Rett syndrome during anoxia. Kron M; Müller M Neuroscience; 2010 Nov; 171(1):300-15. PubMed ID: 20732392 [TBL] [Abstract][Full Text] [Related]
5. Overshooting Subcellular Redox-Responses in Rett-Mouse Hippocampus during Neurotransmitter Stimulation. Festerling K; Can K; Kügler S; Müller M Cells; 2020 Nov; 9(12):. PubMed ID: 33255426 [TBL] [Abstract][Full Text] [Related]
6. Neuronal Redox-Imbalance in Rett Syndrome Affects Mitochondria as Well as Cytosol, and Is Accompanied by Intensified Mitochondrial O Can K; Menzfeld C; Rinne L; Rehling P; Kügler S; Golubiani G; Dudek J; Müller M Front Physiol; 2019; 10():479. PubMed ID: 31114506 [TBL] [Abstract][Full Text] [Related]
7. The free radical scavenger Trolox dampens neuronal hyperexcitability, reinstates synaptic plasticity, and improves hypoxia tolerance in a mouse model of Rett syndrome. Janc OA; Müller M Front Cell Neurosci; 2014; 8():56. PubMed ID: 24605086 [TBL] [Abstract][Full Text] [Related]
8. Enhanced hypoxia susceptibility in hippocampal slices from a mouse model of rett syndrome. Fischer M; Reuter J; Gerich FJ; Hildebrandt B; Hägele S; Katschinski D; Müller M J Neurophysiol; 2009 Feb; 101(2):1016-32. PubMed ID: 19073793 [TBL] [Abstract][Full Text] [Related]
9. The MeCP2-null mouse hippocampus displays altered basal inhibitory rhythms and is prone to hyperexcitability. Zhang L; He J; Jugloff DG; Eubanks JH Hippocampus; 2008; 18(3):294-309. PubMed ID: 18058824 [TBL] [Abstract][Full Text] [Related]
10. Postnatal changes in serotonergic innervation to the hippocampus of methyl-CpG-binding protein 2-null mice. Isoda K; Morimoto M; Matsui F; Hasegawa T; Tozawa T; Morioka S; Chiyonobu T; Nishimura A; Yoshimoto K; Hosoi H Neuroscience; 2010 Feb; 165(4):1254-60. PubMed ID: 19932741 [TBL] [Abstract][Full Text] [Related]
11. Dynamic, semi-quantitative imaging of intracellular ROS levels and redox status in rat hippocampal neurons. Funke F; Gerich FJ; Müller M Neuroimage; 2011 Feb; 54(4):2590-602. PubMed ID: 21081169 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial free radical overproduction due to respiratory chain impairment in the brain of a mouse model of Rett syndrome: protective effect of CNF1. De Filippis B; Valenti D; de Bari L; De Rasmo D; Musto M; Fabbri A; Ricceri L; Fiorentini C; Laviola G; Vacca RA Free Radic Biol Med; 2015 Jun; 83():167-77. PubMed ID: 25708779 [TBL] [Abstract][Full Text] [Related]
13. Metabolic fingerprints of altered brain growth, osmoregulation and neurotransmission in a Rett syndrome model. Viola A; Saywell V; Villard L; Cozzone PJ; Lutz NW PLoS One; 2007 Jan; 2(1):e157. PubMed ID: 17237885 [TBL] [Abstract][Full Text] [Related]
14. MeCP2 dysfunction in Rett syndrome and related disorders. Moretti P; Zoghbi HY Curr Opin Genet Dev; 2006 Jun; 16(3):276-81. PubMed ID: 16647848 [TBL] [Abstract][Full Text] [Related]
15. Exploring the possible link between MeCP2 and oxidative stress in Rett syndrome. Filosa S; Pecorelli A; D'Esposito M; Valacchi G; Hajek J Free Radic Biol Med; 2015 Nov; 88(Pt A):81-90. PubMed ID: 25960047 [TBL] [Abstract][Full Text] [Related]
16. Environmental enrichment ameliorates a motor coordination deficit in a mouse model of Rett syndrome--Mecp2 gene dosage effects and BDNF expression. Kondo M; Gray LJ; Pelka GJ; Christodoulou J; Tam PP; Hannan AJ Eur J Neurosci; 2008 Jun; 27(12):3342-50. PubMed ID: 18557922 [TBL] [Abstract][Full Text] [Related]
18. Selective preservation of MeCP2 in catecholaminergic cells is sufficient to improve the behavioral phenotype of male and female Mecp2-deficient mice. Lang M; Wither RG; Brotchie JM; Wu C; Zhang L; Eubanks JH Hum Mol Genet; 2013 Jan; 22(2):358-71. PubMed ID: 23077217 [TBL] [Abstract][Full Text] [Related]
19. Mecp2 deficiency is associated with learning and cognitive deficits and altered gene activity in the hippocampal region of mice. Pelka GJ; Watson CM; Radziewic T; Hayward M; Lahooti H; Christodoulou J; Tam PP Brain; 2006 Apr; 129(Pt 4):887-98. PubMed ID: 16467389 [TBL] [Abstract][Full Text] [Related]
20. Early defects of GABAergic synapses in the brain stem of a MeCP2 mouse model of Rett syndrome. Medrihan L; Tantalaki E; Aramuni G; Sargsyan V; Dudanova I; Missler M; Zhang W J Neurophysiol; 2008 Jan; 99(1):112-21. PubMed ID: 18032561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]