These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 22750728)
1. The effect of air cavity size in cylindrical ionization chambers on the measurements in high-energy radiotherapy photon beams--an experimental study. Swanpalmer J; Johansson KA Phys Med Biol; 2012 Jul; 57(14):4671-81. PubMed ID: 22750728 [TBL] [Abstract][Full Text] [Related]
2. Experimental investigation of the effect of air cavity size in cylindrical ionization chambers on the measurements in ⁶⁰Co radiotherapy beams. Swanpalmer J; Johansson KA Phys Med Biol; 2011 Nov; 56(22):7093-107. PubMed ID: 22016264 [TBL] [Abstract][Full Text] [Related]
3. Experimental determination of the effective point of measurement of cylindrical ionization chambers for high-energy photon and electron beams. Huang Y; Willomitzer C; Zakaria GA; Hartmann GH Phys Med; 2010; 26(3):126-31. PubMed ID: 19926506 [TBL] [Abstract][Full Text] [Related]
4. Monte Carlo-based correction factors for ion chamber dosimetry in heterogeneous phantoms for megavoltage photon beams. Araki F Phys Med Biol; 2012 Nov; 57(22):7615-27. PubMed ID: 23103477 [TBL] [Abstract][Full Text] [Related]
5. Perturbation correction factors for the NACP-02 plane-parallel ionization chamber in water in high-energy electron beams. Verhaegen F; Zakikhani R; Dusautoy A; Palmans H; Bostock G; Shipley D; Seuntjens J Phys Med Biol; 2006 Mar; 51(5):1221-35. PubMed ID: 16481689 [TBL] [Abstract][Full Text] [Related]
6. Monte Carlo simulated beam quality and perturbation correction factors for ionization chambers in monoenergetic proton beams. Kretschmer J; Dulkys A; Brodbek L; Stelljes TS; Looe HK; Poppe B Med Phys; 2020 Nov; 47(11):5890-5905. PubMed ID: 32989779 [TBL] [Abstract][Full Text] [Related]
7. Effective point of measurement for parallel plate and cylindrical ion chambers in megavoltage electron beams. von Voigts-Rhetz P; Czarnecki D; Zink K Z Med Phys; 2014 Sep; 24(3):216-23. PubMed ID: 24418322 [TBL] [Abstract][Full Text] [Related]
8. Comparison of PENELOPE Monte Carlo dose calculations with Fricke dosimeter and ionization chamber measurements in heterogeneous phantoms (18 MeV electron and 12 MV photon beams). Blazy L; Baltes D; Bordy JM; Cutarella D; Delaunay F; Gouriou J; Leroy E; Ostrowsky A; Beaumont S Phys Med Biol; 2006 Nov; 51(22):5951-65. PubMed ID: 17068376 [TBL] [Abstract][Full Text] [Related]
9. Commissioning stereotactic radiosurgery beams using both experimental and theoretical methods. Ding GX; Duggan DM; Coffey CW Phys Med Biol; 2006 May; 51(10):2549-66. PubMed ID: 16675869 [TBL] [Abstract][Full Text] [Related]
10. Experimental determination of the effective point of measurement and the displacement correction factor for cylindrical ionization chambers in a 6 MV photon beam. Legrand C; Hartmann GH; Karger CP Phys Med Biol; 2012 Nov; 57(21):6869-80. PubMed ID: 23038082 [TBL] [Abstract][Full Text] [Related]
11. The determination of beam quality correction factors: Monte Carlo simulations and measurements. González-Castaño DM; Hartmann GH; Sánchez-Doblado F; Gómez F; Kapsch RP; Pena J; Capote R Phys Med Biol; 2009 Aug; 54(15):4723-41. PubMed ID: 19622853 [TBL] [Abstract][Full Text] [Related]
12. Study of the effective point of measurement for ion chambers in electron beams by Monte Carlo simulation. Wang LL; Rogers DW Med Phys; 2009 Jun; 36(6):2034-42. PubMed ID: 19610292 [TBL] [Abstract][Full Text] [Related]
13. Effect of ICRU report 90 recommendations on Monte Carlo calculated k Kawachi T; Saitoh H; Katayose T; Tohyama N; Miyasaka R; Cho SY; Iwase T; Hara R Med Phys; 2019 Nov; 46(11):5185-5194. PubMed ID: 31386762 [TBL] [Abstract][Full Text] [Related]
14. Positioning of a plane-parallel ionization chamber in clinical electron beams and the impact on perturbation factors. Zink K; Wulff J Phys Med Biol; 2009 Apr; 54(8):2421-35. PubMed ID: 19336840 [TBL] [Abstract][Full Text] [Related]
15. Perturbation factors for cylindrical ionization chambers in proton beams. Part I: corrections for gradients. Palmans H Phys Med Biol; 2006 Jul; 51(14):3483-501. PubMed ID: 16825744 [TBL] [Abstract][Full Text] [Related]
16. Assessment of ionization chamber correction factors in photon beams using a time saving strategy with PENELOPE code. Reis CQ; Nicolucci P Phys Med; 2016 Feb; 32(2):297-304. PubMed ID: 26873785 [TBL] [Abstract][Full Text] [Related]
18. The replacement correction factors for cylindrical chambers in high-energy photon beams. Wang LL; Rogers DW Phys Med Biol; 2009 Mar; 54(6):1609-20. PubMed ID: 19229100 [TBL] [Abstract][Full Text] [Related]
19. Ion-recombination correction for different ionization chambers in high dose rate flattening-filter-free photon beams. Lang S; Hrbacek J; Leong A; Klöck S Phys Med Biol; 2012 May; 57(9):2819-27. PubMed ID: 22510780 [TBL] [Abstract][Full Text] [Related]
20. On the p(dis) correction factor for cylindrical chambers. Andreo P Phys Med Biol; 2010 Mar; 55(5):L9-16; author reply L17-9. PubMed ID: 20157227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]