BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 22750736)

  • 1. Ferritin up-regulation and transient ROS production in cultured brain astrocytes after loading with iron oxide nanoparticles.
    Geppert M; Hohnholt MC; Nürnberger S; Dringen R
    Acta Biomater; 2012 Oct; 8(10):3832-9. PubMed ID: 22750736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes.
    Petters C; Thiel K; Dringen R
    Nanotoxicology; 2016; 10(3):332-42. PubMed ID: 26287375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells.
    Hohnholt MC; Geppert M; Dringen R
    Acta Biomater; 2011 Nov; 7(11):3946-54. PubMed ID: 21763792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes.
    Geppert M; Hohnholt MC; Thiel K; Nürnberger S; Grunwald I; Rezwan K; Dringen R
    Nanotechnology; 2011 Apr; 22(14):145101. PubMed ID: 21346306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and interfacing of biocompatible iron oxide nanoparticles through the ferroxidase activity of Helicobacter Pylori ferritin.
    Lee IL; Li PS; Yu WL; Shen HH
    Biofabrication; 2012 Dec; 4(4):045001. PubMed ID: 23013844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron accumulation, iron-mediated toxicity and altered levels of ferritin and transferrin receptor in cultured astrocytes during incubation with ferric ammonium citrate.
    Hoepken HH; Korten T; Robinson SR; Dringen R
    J Neurochem; 2004 Mar; 88(5):1194-202. PubMed ID: 15009675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of iron oxide nanoparticles by cultured primary neurons.
    Petters C; Dringen R
    Neurochem Int; 2015 Feb; 81():1-9. PubMed ID: 25510641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake and metabolism of iron and iron oxide nanoparticles in brain astrocytes.
    Hohnholt MC; Dringen R
    Biochem Soc Trans; 2013 Dec; 41(6):1588-92. PubMed ID: 24256259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells.
    Luther EM; Petters C; Bulcke F; Kaltz A; Thiel K; Bickmeyer U; Dringen R
    Acta Biomater; 2013 Sep; 9(9):8454-65. PubMed ID: 23727247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the toxic effects of iron oxide nanoparticles.
    Soenen SJ; De Cuyper M; De Smedt SC; Braeckmans K
    Methods Enzymol; 2012; 509():195-224. PubMed ID: 22568907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of silver nanoparticles by cultured primary brain astrocytes.
    Luther EM; Koehler Y; Diendorf J; Epple M; Dringen R
    Nanotechnology; 2011 Sep; 22(37):375101. PubMed ID: 21852719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes.
    Bulcke F; Thiel K; Dringen R
    Nanotoxicology; 2014 Nov; 8(7):775-85. PubMed ID: 23889294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic field-induced acceleration of the accumulation of magnetic iron oxide nanoparticles by cultured brain astrocytes.
    Lamkowsky MC; Geppert M; Schmidt MM; Dringen R
    J Biomed Mater Res A; 2012 Feb; 100(2):323-34. PubMed ID: 22065542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses.
    Luo C; Li Y; Yang L; Wang X; Long J; Liu J
    Arch Toxicol; 2015 Mar; 89(3):357-69. PubMed ID: 24847785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of mechanical properties of iron oxide nanoparticle-loaded functional nano-carrier on tumor targeting and imaging.
    Choi WI; Kim JY; Heo SU; Jeong YY; Kim YH; Tae G
    J Control Release; 2012 Sep; 162(2):267-75. PubMed ID: 22824783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc stimulates the production of toxic reactive oxygen species (ROS) and inhibits glutathione reductase in astrocytes.
    Bishop GM; Dringen R; Robinson SR
    Free Radic Biol Med; 2007 Apr; 42(8):1222-30. PubMed ID: 17382203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased iron-induced oxidative stress and toxicity in scrapie-infected neuroblastoma cells.
    Fernaeus S; Land T
    Neurosci Lett; 2005 Jul; 382(3):217-20. PubMed ID: 15925093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferritin, a protein containing iron nanoparticles, induces reactive oxygen species formation and inhibits glutamate uptake in rat brain synaptosomes.
    Alekseenko AV; Waseem TV; Fedorovich SV
    Brain Res; 2008 Nov; 1241():193-200. PubMed ID: 18835382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-culture of neurones with glutathione deficient astrocytes leads to increased neuronal susceptibility to nitric oxide and increased glutamate-cysteine ligase activity.
    Gegg ME; Clark JB; Heales SJ
    Brain Res; 2005 Mar; 1036(1-2):1-6. PubMed ID: 15725395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of glutathione and its dependent enzymes in gill cells of Anguilla anguilla exposed to silica coated iron oxide nanoparticles with or without mercury co-exposure under in vitro condition.
    Srikanth K; Ahmad I; Rao JV; Trindade T; Duarte AC; Pereira E
    Comp Biochem Physiol C Toxicol Pharmacol; 2014 May; 162():7-14. PubMed ID: 24607655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.