BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22750795)

  • 1. Graphene-like metal-on-silicon field-effect transistor.
    Dragoman M; Konstantinidis G; Tsagaraki K; Kostopoulos T; Dragoman D; Neculoiu D
    Nanotechnology; 2012 Aug; 23(30):305201. PubMed ID: 22750795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Top-gated graphene field-effect transistors with high normalized transconductance and designable dirac point voltage.
    Xu H; Zhang Z; Xu H; Wang Z; Wang S; Peng LM
    ACS Nano; 2011 Jun; 5(6):5031-7. PubMed ID: 21528892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of the source-drain current and gate leakage current to understand the graphene field-effect transistors.
    Yu C; Liu H; Ni W; Gao N; Zhao J; Zhang H
    Phys Chem Chem Phys; 2011 Feb; 13(8):3461-7. PubMed ID: 21240394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naphthalenetetracarboxylic diimide layer-based transistors with nanometer oxide and side chain dielectrics operating below one volt.
    Jung BJ; Martinez Hardigree JF; Dhar BM; Dawidczyk TJ; Sun J; See KC; Katz HE
    ACS Nano; 2011 Apr; 5(4):2723-34. PubMed ID: 21351783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency graphene voltage amplifier.
    Han SJ; Jenkins KA; Valdes Garcia A; Franklin AD; Bol AA; Haensch W
    Nano Lett; 2011 Sep; 11(9):3690-3. PubMed ID: 21805988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triple-mode single-transistor graphene amplifier and its applications.
    Yang X; Liu G; Balandin AA; Mohanram K
    ACS Nano; 2010 Oct; 4(10):5532-8. PubMed ID: 20939515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors.
    Yoon MH; Kim C; Facchetti A; Marks TJ
    J Am Chem Soc; 2006 Oct; 128(39):12851-69. PubMed ID: 17002380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The formation of a p-n junction in a polymer electrolyte top-gated bilayer graphene transistor.
    Chakraborty B; Das A; Sood AK
    Nanotechnology; 2009 Sep; 20(36):365203. PubMed ID: 19687535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-aligned fabrication of graphene RF transistors with T-shaped gate.
    Badmaev A; Che Y; Li Z; Wang C; Zhou C
    ACS Nano; 2012 Apr; 6(4):3371-6. PubMed ID: 22404336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nanoparticulate indium tin oxide field-effect transistor with solid electrolyte gating.
    Dasgupta S; Gottschalk S; Kruk R; Hahn H
    Nanotechnology; 2008 Oct; 19(43):435203. PubMed ID: 21832686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large gate modulation in the current of a room temperature single molecule transistor.
    Xu B; Xiao X; Yang X; Zang L; Tao N
    J Am Chem Soc; 2005 Mar; 127(8):2386-7. PubMed ID: 15724981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parametric Analysis of Indium Gallium Arsenide Wafer-based Thin Body (5 nm) Double-gate MOSFETs for Hybrid RF Applications.
    Paramasivam P; Gowthaman N; Srivastava VM
    Recent Pat Nanotechnol; 2024; 18(3):335-349. PubMed ID: 37723950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-electron effects in non-overlapped multiple-gate silicon-on-insulator metal-oxide-semiconductor field-effect transistors.
    Lee W; Su P
    Nanotechnology; 2009 Feb; 20(6):065202. PubMed ID: 19417374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electro-oxidized epitaxial graphene channel field-effect transistors with single-walled carbon nanotube thin film gate electrode.
    Ramesh P; Itkis ME; Bekyarova E; Wang F; Niyogi S; Chi X; Berger C; de Heer W; Haddon RC
    J Am Chem Soc; 2010 Oct; 132(41):14429-36. PubMed ID: 20873843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward graphene-based quantum interference devices.
    Munárriz J; Domínguez-Adame F; Malyshev AV
    Nanotechnology; 2011 Sep; 22(36):365201. PubMed ID: 21836327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Change in electronic states in the accumulation layer at interfaces in a poly(3-hexylthiophene) field-effect transistor and the impact of encapsulation.
    Park B; Kim YJ; Graham S; Reichmanis E
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3545-51. PubMed ID: 21863841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical transport of bottom-up grown single-crystal Si(1-x)Ge(x) nanowire.
    Yang WF; Lee SJ; Liang GC; Whang SJ; Kwong DL
    Nanotechnology; 2008 Jun; 19(22):225203. PubMed ID: 21825755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sample preparation for precise and quantitative electron holographic analysis of semiconductor devices.
    Han MG; Li J; Xie Q; Fejes P; Conner J; Taylor B; McCartney MR
    Microsc Microanal; 2006 Aug; 12(4):295-301. PubMed ID: 16842641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors.
    Tang J; Wang CY; Xiu F; Lang M; Chu LW; Tsai CJ; Chueh YL; Chen LJ; Wang KL
    ACS Nano; 2011 Jul; 5(7):6008-15. PubMed ID: 21699197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface channel MESFETs on hydrogenated diamond.
    Conte G; Giovine E; Bolshakov A; Ralchenko V; Konov V
    Nanotechnology; 2012 Jan; 23(2):025201. PubMed ID: 22166514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.