BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22750986)

  • 21. rDNA-directed integration by an HIV-1 integrase--I-PpoI fusion protein.
    Schenkwein D; Turkki V; Ahlroth MK; Timonen O; Airenne KJ; Ylä-Herttuala S
    Nucleic Acids Res; 2013 Mar; 41(5):e61. PubMed ID: 23275537
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved RNA cleavage by LNAzyme derivatives of DNAzymes.
    Vester B; Lundberg LB; Sørensen MD; Babu BR; Douthwaite S; Wengel J
    Biochem Soc Trans; 2004 Feb; 32(Pt 1):37-40. PubMed ID: 14748708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly active low magnesium hammerhead ribozyme.
    Fedoruk-Wyszomirska A; Szymański M; Wyszko E; Barciszewska MZ; Barciszewski J
    J Biochem; 2009 Apr; 145(4):451-9. PubMed ID: 19124457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 2'-Functional group of adenosine in 10-23 DNAzyme promotes catalytic activity.
    Du S; Li Y; He J
    Bioorg Med Chem Lett; 2020 Feb; 30(4):126961. PubMed ID: 31932223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Influence of DNAzymes against cyclin D1 in tumor cell cycle].
    Li D; Zhu J; Zhou Y; Liu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):374-8, 384. PubMed ID: 19499806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleic acid-mediated cleavage of M1 gene of influenza A virus is significantly augmented by antisense molecules targeted to hybridize close to the cleavage site.
    Kumar B; Khanna M; Kumar P; Sood V; Vyas R; Banerjea AC
    Mol Biotechnol; 2012 May; 51(1):27-36. PubMed ID: 21744034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tetrahedral DNAzymes for enhanced intracellular gene-silencing activity.
    Thai HBD; Levi-Acobas F; Yum SY; Jang G; Hollenstein M; Ahn DR
    Chem Commun (Camb); 2018 Aug; 54(68):9410-9413. PubMed ID: 30059088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimisation of the 10-23 DNAzyme-substrate pairing interactions enhanced RNA cleavage activity at purine-cytosine target sites.
    Cairns MJ; King A; Sun LQ
    Nucleic Acids Res; 2003 Jun; 31(11):2883-9. PubMed ID: 12771215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Target-site selection for the 10-23 DNAzyme.
    Cairns MJ; Sun LQ
    Methods Mol Biol; 2004; 252():267-77. PubMed ID: 15017056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A smart DNAzyme-MnO₂ nanosystem for efficient gene silencing.
    Fan H; Zhao Z; Yan G; Zhang X; Yang C; Meng H; Chen Z; Liu H; Tan W
    Angew Chem Int Ed Engl; 2015 Apr; 54(16):4801-5. PubMed ID: 25728966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oligodeoxyribozymes that cleave beta-catenin messenger RNA inhibit growth of colon cancer cells via reduction of beta-catenin response transcription.
    Choi BR; Gwak J; Kwon HM; Oh S; Kim KP; Choi WH; Cho YH; Kim DE
    Mol Cancer Ther; 2010 Jun; 9(6):1894-902. PubMed ID: 20501807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient silencing of gene expression by an ASON-bulge-DNAzyme complex.
    Yi J; Liu C
    PLoS One; 2011 Apr; 6(4):e18629. PubMed ID: 21490924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nuclear localization of human immunodeficiency virus type 1 integrase expressed as a fusion protein with green fluorescent protein.
    Pluymers W; Cherepanov P; Schols D; De Clercq E; Debyser Z
    Virology; 1999 Jun; 258(2):327-32. PubMed ID: 10366569
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Boronic Acid-Mediated Activity Control of Split 10-23 DNAzymes.
    Debiais M; Lelievre A; Vasseur JJ; Müller S; Smietana M
    Chemistry; 2021 Jan; 27(3):1138-1144. PubMed ID: 33058268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Turning the 10-23 DNAzyme on and off with light.
    Richards JL; Seward GK; Wang YH; Dmochowski IJ
    Chembiochem; 2010 Feb; 11(3):320-4. PubMed ID: 20077457
    [No Abstract]   [Full Text] [Related]  

  • 36. Crystal structure of an RNA-cleaving DNAzyme.
    Liu H; Yu X; Chen Y; Zhang J; Wu B; Zheng L; Haruehanroengra P; Wang R; Li S; Lin J; Li J; Sheng J; Huang Z; Ma J; Gan J
    Nat Commun; 2017 Dec; 8(1):2006. PubMed ID: 29222499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies on the preferred uracil-adenine base pair at the cleavage site of 10-23 DNAzyme by functional group modifications on adenine.
    Zhu J; Li Z; Yang Z; He J
    Bioorg Med Chem; 2015 Aug; 23(15):4256-4263. PubMed ID: 26145822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coarse-Grained Brownian Dynamics Simulations of the 10-23 DNAzyme.
    Kenward M; Dorfman KD
    Biophys J; 2009 Nov; 97(10):2785-93. PubMed ID: 19917233
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conformational studies of 10-23 DNAzyme in solution through pyrenyl-labeled 2'-deoxyadenosine derivatives.
    Li Z; Zhu J; He J
    Org Biomol Chem; 2016 Oct; 14(41):9846-9858. PubMed ID: 27714317
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel strategy of chemical modification for rate enhancement of 10-23 DNAzyme: a combination of A9 position and 8-aza-7-deaza-2'-deoxyadenosine analogs.
    He J; Zhang D; Wang Q; Wei X; Cheng M; Liu K
    Org Biomol Chem; 2011 Aug; 9(16):5728-36. PubMed ID: 21717014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.