These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 22751043)
1. Germination tests for assessing biochar quality. Rogovska N; Laird D; Cruse RM; Trabue S; Heaton E J Environ Qual; 2012; 41(4):1014-22. PubMed ID: 22751043 [TBL] [Abstract][Full Text] [Related]
2. Extent of pyrolysis impacts on fast pyrolysis biochar properties. Brewer CE; Hu YY; Schmidt-Rohr K; Loynachan TE; Laird DA; Brown RC J Environ Qual; 2012; 41(4):1115-22. PubMed ID: 22751053 [TBL] [Abstract][Full Text] [Related]
3. Characterization of biochars to evaluate recalcitrance and agronomic performance. Enders A; Hanley K; Whitman T; Joseph S; Lehmann J Bioresour Technol; 2012 Jun; 114():644-53. PubMed ID: 22483559 [TBL] [Abstract][Full Text] [Related]
4. Ameliorating Effects of Biochar Derived from Poultry Manure and White Clover Residues on Soil Nutrient Status and Plant growth Promotion--Greenhouse Experiments. Abbasi MK; Anwar AA PLoS One; 2015; 10(6):e0131592. PubMed ID: 26121057 [TBL] [Abstract][Full Text] [Related]
5. Relationships between Chemical Characteristics and Phytotoxicity of Biochar from Poultry Litter Pyrolysis. Rombolà AG; Marisi G; Torri C; Fabbri D; Buscaroli A; Ghidotti M; Hornung A J Agric Food Chem; 2015 Aug; 63(30):6660-7. PubMed ID: 26151387 [TBL] [Abstract][Full Text] [Related]
6. Allelopathic effect of Bromus spp. and Lolium spp. shoot extracts on some crops. Lehoczky E; Nelima MO; Szabó R; Szalai A; Nagy P Commun Agric Appl Biol Sci; 2011; 76(3):537-44. PubMed ID: 22696963 [TBL] [Abstract][Full Text] [Related]
7. Pyrolysis biochar has negligible effects on soil greenhouse gas production, microbial communities, plant germination, and initial seedling growth. Meschewski E; Holm N; Sharma BK; Spokas K; Minalt N; Kelly JJ Chemosphere; 2019 Aug; 228():565-576. PubMed ID: 31055071 [TBL] [Abstract][Full Text] [Related]
8. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings. Liao S; Pan B; Li H; Zhang D; Xing B Environ Sci Technol; 2014; 48(15):8581-7. PubMed ID: 24988274 [TBL] [Abstract][Full Text] [Related]
9. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures. Zhang G; Zhang Q; Sun K; Liu X; Zheng W; Zhao Y Environ Pollut; 2011 Oct; 159(10):2594-601. PubMed ID: 21719171 [TBL] [Abstract][Full Text] [Related]
10. Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Sun K; Keiluweit M; Kleber M; Pan Z; Xing B Bioresour Technol; 2011 Nov; 102(21):9897-903. PubMed ID: 21907572 [TBL] [Abstract][Full Text] [Related]
11. Aged biochar changed copper availability and distribution among soil fractions and influenced corn seed germination in a copper-contaminated soil. Gonzaga MIS; Matias MIAS; Andrade KR; Jesus AN; Cunha GDC; Andrade RS; Santos JCJ Chemosphere; 2020 Feb; 240():124828. PubMed ID: 31568944 [TBL] [Abstract][Full Text] [Related]
12. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Chen X; Chen G; Chen L; Chen Y; Lehmann J; McBride MB; Hay AG Bioresour Technol; 2011 Oct; 102(19):8877-84. PubMed ID: 21764299 [TBL] [Abstract][Full Text] [Related]
13. Effects of biochar nanoparticles on seed germination and seedling growth. Zhang K; Wang Y; Mao J; Chen B Environ Pollut; 2020 Jan; 256():113409. PubMed ID: 31672365 [TBL] [Abstract][Full Text] [Related]
14. Qualitative analysis of volatile organic compounds on biochar. Spokas KA; Novak JM; Stewart CE; Cantrell KB; Uchimiya M; Dusaire MG; Ro KS Chemosphere; 2011 Oct; 85(5):869-82. PubMed ID: 21788060 [TBL] [Abstract][Full Text] [Related]
15. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Hale SE; Alling V; Martinsen V; Mulder J; Breedveld GD; Cornelissen G Chemosphere; 2013 Jun; 91(11):1612-9. PubMed ID: 23369636 [TBL] [Abstract][Full Text] [Related]
16. Phytochemical screening, total phenolic content and phytotoxic activity of corn (Zea mays) extracts against some indicator species. Ahmed HM Nat Prod Res; 2018 Mar; 32(6):714-718. PubMed ID: 28562074 [TBL] [Abstract][Full Text] [Related]
17. Physical and chemical characterization of waste wood derived biochars. Yargicoglu EN; Sadasivam BY; Reddy KR; Spokas K Waste Manag; 2015 Feb; 36():256-68. PubMed ID: 25464942 [TBL] [Abstract][Full Text] [Related]
18. A comparison of corn (Zea mays L.) residue and its biochar on soil C and plant growth. Calderón FJ; Benjamin J; Vigil MF PLoS One; 2015; 10(4):e0121006. PubMed ID: 25836653 [TBL] [Abstract][Full Text] [Related]
19. Phytotoxical effect of Lepidium draba L. extracts on the germination and growth of monocot (Zea mays L.) and dicot (Amaranthus retroflexus L.) seeds. Kaya Y; Aksakal O; Sunar S; Erturk FA; Bozari S; Agar G; Erez ME; Battal P Toxicol Ind Health; 2015 Mar; 31(3):247-54. PubMed ID: 23293131 [TBL] [Abstract][Full Text] [Related]
20. Influence of biochar on nitrogen fractions in a coastal plain soil. Schomberg HH; Gaskin JW; Harris K; Das KC; Novak JM; Busscher WJ; Watts DW; Woodroof RH; Lima IM; Ahmedna M; Rehrah D; Xing B J Environ Qual; 2012; 41(4):1087-95. PubMed ID: 22751050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]