These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 22751053)

  • 41. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil.
    Uchimiya M; Bannon DI; Wartelle LH
    J Agric Food Chem; 2012 Feb; 60(7):1798-809. PubMed ID: 22280497
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils.
    Beesley L; Moreno-Jiménez E; Gomez-Eyles JL; Harris E; Robinson B; Sizmur T
    Environ Pollut; 2011 Dec; 159(12):3269-82. PubMed ID: 21855187
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Algal biochar--production and properties.
    Bird MI; Wurster CM; de Paula Silva PH; Bass AM; de Nys R
    Bioresour Technol; 2011 Jan; 102(2):1886-91. PubMed ID: 20797850
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment.
    Windeatt JH; Ross AB; Williams PT; Forster PM; Nahil MA; Singh S
    J Environ Manage; 2014 Dec; 146():189-197. PubMed ID: 25173727
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.).
    Angin D; Sensöz S
    Int J Phytoremediation; 2014; 16(7-12):684-93. PubMed ID: 24933878
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Slow pyrolyzed biochars from crop residues for soil metal(loid) immobilization and microbial community abundance in contaminated agricultural soils.
    Igalavithana AD; Park J; Ryu C; Lee YH; Hashimoto Y; Huang L; Kwon EE; Ok YS; Lee SS
    Chemosphere; 2017 Jun; 177():157-166. PubMed ID: 28288424
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of Maize Straw Biochar on Bacterial Communities in Agricultural Soil.
    Liu J; Ding Y; Ji Y; Gao G; Wang Y
    Bull Environ Contam Toxicol; 2020 Mar; 104(3):333-338. PubMed ID: 32006054
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of pyrolysis conditions on the total contents of polycyclic aromatic hydrocarbons in biochars produced from organic residues: Assessment of their hazard potential.
    De la Rosa JM; Sánchez-Martín ÁM; Campos P; Miller AZ
    Sci Total Environ; 2019 Jun; 667():578-585. PubMed ID: 30833256
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pyrolysis biochar has negligible effects on soil greenhouse gas production, microbial communities, plant germination, and initial seedling growth.
    Meschewski E; Holm N; Sharma BK; Spokas K; Minalt N; Kelly JJ
    Chemosphere; 2019 Aug; 228():565-576. PubMed ID: 31055071
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida).
    Kim KH; Kim JY; Cho TS; Choi JW
    Bioresour Technol; 2012 Aug; 118():158-62. PubMed ID: 22705519
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biochar from "Kon Tiki" flame curtain and other kilns: Effects of nutrient enrichment and kiln type on crop yield and soil chemistry.
    Pandit NR; Mulder J; Hale SE; Schmidt HP; Cornelissen G
    PLoS One; 2017; 12(4):e0176378. PubMed ID: 28448621
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake.
    Angın D
    Bioresour Technol; 2013 Jan; 128():593-7. PubMed ID: 23211485
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of biochars produced from solid organic municipal waste on soil quality parameters.
    Randolph P; Bansode RR; Hassan OA; Rehrah D; Ravella R; Reddy MR; Watts DW; Novak JM; Ahmedna M
    J Environ Manage; 2017 May; 192():271-280. PubMed ID: 28183027
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation and characterization of biochar derived from co-pyrolysis of Enteromorpha prolifera and corn straw and its potential as a soil amendment.
    Suo F; You X; Yin S; Wu H; Zhang C; Yu X; Sun R; Li Y
    Sci Total Environ; 2021 Dec; 798():149167. PubMed ID: 34375261
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter.
    Uchimiya M; Lima IM; Klasson KT; Wartelle LH
    Chemosphere; 2010 Aug; 80(8):935-40. PubMed ID: 20542314
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The impact of biochar on the bioaccessibility of (14)C-phenanthrene in aged soil.
    Ogbonnaya OU; Adebisi OO; Semple KT
    Environ Sci Process Impacts; 2014 Nov; 16(11):2635-43. PubMed ID: 25277257
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reduced plant uptake of pesticides with biochar additions to soil.
    Yu XY; Ying GG; Kookana RS
    Chemosphere; 2009 Jul; 76(5):665-71. PubMed ID: 19419749
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization and 2D structural model of corn straw and poplar leaf biochars.
    Zhao N; Lv Y; Yang X; Huang F; Yang J
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25789-25798. PubMed ID: 29270898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nutrient leaching in a Colombian savanna Oxisol amended with biochar.
    Major J; Rondon M; Molina D; Riha SJ; Lehmann J
    J Environ Qual; 2012; 41(4):1076-86. PubMed ID: 22751049
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of biochars produced from cornstovers for soil amendment.
    Lee JW; Kidder M; Evans BR; Paik S; Buchanan AC; Garten CT; Brown RC
    Environ Sci Technol; 2010 Oct; 44(20):7970-4. PubMed ID: 20836548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.