These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 22751060)
1. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. Choppala GK; Bolan NS; Megharaj M; Chen Z; Naidu R J Environ Qual; 2012; 41(4):1175-84. PubMed ID: 22751060 [TBL] [Abstract][Full Text] [Related]
2. Chemodynamics of chromium reduction in soils: implications to bioavailability. Choppala G; Bolan N; Seshadri B J Hazard Mater; 2013 Oct; 261():718-24. PubMed ID: 23608747 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of chromate reduction in soils by surface modified biochar. Mandal S; Sarkar B; Bolan N; Ok YS; Naidu R J Environ Manage; 2017 Jan; 186(Pt 2):277-284. PubMed ID: 27229360 [TBL] [Abstract][Full Text] [Related]
4. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Choppala G; Bolan N; Kunhikrishnan A; Bush R Chemosphere; 2016 Feb; 144():374-81. PubMed ID: 26383264 [TBL] [Abstract][Full Text] [Related]
5. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes. Acevedo-Aguilar FJ; Espino-Saldaña AE; Leon-Rodriguez IL; Rivera-Cano ME; Avila-Rodriguez M; Wrobel K; Wrobel K; Lappe P; Ulloa M; Gutiérrez-Corona JF Can J Microbiol; 2006 Sep; 52(9):809-15. PubMed ID: 17110972 [TBL] [Abstract][Full Text] [Related]
6. Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Choppala G; Bolan N; Kunhikrishnan A; Skinner W; Seshadri B Environ Sci Pollut Res Int; 2015 Jun; 22(12):8969-78. PubMed ID: 23539209 [TBL] [Abstract][Full Text] [Related]
7. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag. Chai L; Huang S; Yang Z; Peng B; Huang Y; Chen Y J Hazard Mater; 2009 Aug; 167(1-3):516-22. PubMed ID: 19246154 [TBL] [Abstract][Full Text] [Related]
8. Modulation of hexavalent chromium toxicity on Οriganum vulgare in an acidic soil amended with peat, lime, and zeolite. Antoniadis V; Zanni AA; Levizou E; Shaheen SM; Dimirkou A; Bolan N; Rinklebe J Chemosphere; 2018 Mar; 195():291-300. PubMed ID: 29272798 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of Cr(VI) reducing Cellulomonas spp. from subsurface soils: implications for long-term chromate reduction. Viamajala S; Smith WA; Sani RK; Apel WA; Petersen JN; Neal AL; Roberto FF; Newby DT; Peyton BM Bioresour Technol; 2007 Feb; 98(3):612-22. PubMed ID: 16644211 [TBL] [Abstract][Full Text] [Related]
10. Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site. Zhang K; Li F Appl Microbiol Biotechnol; 2011 May; 90(3):1163-9. PubMed ID: 21318365 [TBL] [Abstract][Full Text] [Related]
11. Chromate removal as influenced by the structural changes of soil components upon carbonization at different temperatures. Chen KY; Liu JC; Chiang PN; Wang SL; Kuan WH; Tzou YM; Deng Y; Tseng KJ; Chen CC; Wang MK Environ Pollut; 2012 Mar; 162():151-8. PubMed ID: 22243860 [TBL] [Abstract][Full Text] [Related]
12. The effectiveness of four organic matter amendments for decreasing resin-extractable Cr(VI) in Cr(VI)-contaminated soils. Chiu CC; Cheng CJ; Lin TH; Juang KW; Lee DY J Hazard Mater; 2009 Jan; 161(2-3):1239-44. PubMed ID: 18524481 [TBL] [Abstract][Full Text] [Related]
13. Impact of wastewater derived dissolved organic carbon on reduction, mobility, and bioavailability of As(V) and Cr(VI) in contaminated soils. Kunhikrishnan A; Choppala G; Seshadri B; Wijesekara H; Bolan NS; Mbene K; Kim WI J Environ Manage; 2017 Jan; 186(Pt 2):183-191. PubMed ID: 27530073 [TBL] [Abstract][Full Text] [Related]
14. Bioremediation of Cr(VI) in contaminated soils. Krishna KR; Philip L J Hazard Mater; 2005 May; 121(1-3):109-17. PubMed ID: 15885411 [TBL] [Abstract][Full Text] [Related]
15. Mechanistic evaluation of biochar potential for plant growth promotion and alleviation of chromium-induced phytotoxicity in Ficus elastica. Kumar A; Joseph S; Tsechansky L; Schreiter IJ; Schüth C; Taherysoosavi S; Mitchell DRG; Graber ER Chemosphere; 2020 Mar; 243():125332. PubMed ID: 31751928 [TBL] [Abstract][Full Text] [Related]
16. Influence of soil geochemical and physical properties on chromium(VI) sorption and bioaccessibility. Jardine PM; Stewart MA; Barnett MO; Basta NT; Brooks SC; Fendorf S; Mehlhorn TL Environ Sci Technol; 2013 Oct; 47(19):11241-8. PubMed ID: 23941581 [TBL] [Abstract][Full Text] [Related]
17. Reduction of Cr(VI) by crop-residue-derived black carbon. Hsu NH; Wang SL; Lin YC; Sheng GD; Lee JF Environ Sci Technol; 2009 Dec; 43(23):8801-6. PubMed ID: 19943649 [TBL] [Abstract][Full Text] [Related]
18. Adsorption and mobility of Cr(III)-organic acid complexes in soils. Cao X; Guo J; Mao J; Lan Y J Hazard Mater; 2011 Sep; 192(3):1533-8. PubMed ID: 21782340 [TBL] [Abstract][Full Text] [Related]
19. In situ reduction of chromium(VI) in heavily contaminated soils through organic carbon amendment. Tokunaga TK; Wan J; Firestone MK; Hazen TC; Olson KR; Herman DJ; Sutton SR; Lanzirotti A J Environ Qual; 2003; 32(5):1641-9. PubMed ID: 14535304 [TBL] [Abstract][Full Text] [Related]
20. Estimating the dual-enzyme kinetic parameters for Cr (VI) reduction by Shewanella oneidensis MR-1 from soil column experiments. Hossain MA; Alam M; Yonge DR Water Res; 2005 Sep; 39(14):3342-8. PubMed ID: 16045962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]