BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 22751322)

  • 1. Rice heterotrimeric G-protein gamma subunits (RGG1 and RGG2) are differentially regulated under abiotic stress.
    Yadav DK; Islam SM; Tuteja N
    Plant Signal Behav; 2012 Jul; 7(7):733-40. PubMed ID: 22751322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rice heterotrimeric G-protein alpha subunit (RGA1): in silico analysis of the gene and promoter and its upregulation under abiotic stress.
    Yadav DK; Shukla D; Tuteja N
    Plant Physiol Biochem; 2013 Feb; 63():262-71. PubMed ID: 23313793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function of heterotrimeric G-protein γ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS.
    Swain DM; Sahoo RK; Srivastava VK; Tripathy BC; Tuteja R; Tuteja N
    Planta; 2017 Feb; 245(2):367-383. PubMed ID: 27785615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation, in silico characterization, localization and expression analysis of abiotic stress-responsive rice G-protein β subunit (RGB1).
    Yadav DK; Shukla D; Tuteja N
    Plant Signal Behav; 2014; 9(5):e28890. PubMed ID: 24739238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concurrent overexpression of rice G-protein β and γ subunits provide enhanced tolerance to sheath blight disease and abiotic stress in rice.
    Swain DM; Sahoo RK; Chandan RK; Ghosh S; Kumar R; Jha G; Tuteja N
    Planta; 2019 Nov; 250(5):1505-1520. PubMed ID: 31332521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rice G-protein coupled receptor (GPCR): in silico analysis and transcription regulation under abiotic stress.
    Yadav DK; Tuteja N
    Plant Signal Behav; 2011 Aug; 6(8):1079-86. PubMed ID: 21778827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C.
    Misra S; Wu Y; Venkataraman G; Sopory SK; Tuteja N
    Plant J; 2007 Aug; 51(4):656-69. PubMed ID: 17587233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.).
    Rana RM; Dong S; Ali Z; Huang J; Zhang HS
    Genet Mol Res; 2012 Oct; 11(4):3676-87. PubMed ID: 22930426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterotrimeric G protein are involved in the regulation of multiple agronomic traits and stress tolerance in rice.
    Cui Y; Jiang N; Xu Z; Xu Q
    BMC Plant Biol; 2020 Feb; 20(1):90. PubMed ID: 32111163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression profiling of abiotic stress-inducible genes in response to multiple stresses in rice (Oryza sativa L.) varieties with contrasting level of stress tolerance.
    Basu S; Roychoudhury A
    Biomed Res Int; 2014; 2014():706890. PubMed ID: 25110688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression and interaction specificity of the heterotrimeric G-protein family in Brassica nigra reveal their developmental- and condition-specific roles.
    Kumar R; Arya GC; Bisht NC
    Plant Cell Physiol; 2014 Nov; 55(11):1954-68. PubMed ID: 25231958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective Strategies for Heterologous Expression of Plant Heterotrimeric G-protein γ Subunits without Gβ Subunit Partners.
    Avsar B
    Protein Pept Lett; 2022; 29(5):429-439. PubMed ID: 35125073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of the 14-3-3 gene family in rice and its expression studies under abiotic stress.
    Yashvardhini N; Bhattacharya S; Chaudhuri S; Sengupta DN
    Planta; 2018 Jan; 247(1):229-253. PubMed ID: 28956163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oryza sativa drought-, heat-, and salt-induced RING finger protein 1 (OsDHSRP1) negatively regulates abiotic stress-responsive gene expression.
    Kim JH; Lim SD; Jang CS
    Plant Mol Biol; 2020 Jun; 103(3):235-252. PubMed ID: 32206999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterotrimeric G-proteins in Picea abies and their regulation in response to Heterobasidion annosum s.l. infection.
    de Vries S; Nemesio-Gorriz M; Blair PB; Karlsson M; Mukhtar MS; Elfstrand M
    BMC Plant Biol; 2015 Dec; 15():287. PubMed ID: 26654722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice.
    Fang Y; You J; Xie K; Xie W; Xiong L
    Mol Genet Genomics; 2008 Dec; 280(6):547-63. PubMed ID: 18813954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rice phospholipase A superfamily: organization, phylogenetic and expression analysis during abiotic stresses and development.
    Singh A; Baranwal V; Shankar A; Kanwar P; Ranjan R; Yadav S; Pandey A; Kapoor S; Pandey GK
    PLoS One; 2012; 7(2):e30947. PubMed ID: 22363522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a novel cyclase-like gene family involved in controlling stress tolerance in rice.
    Qin Y; Shen X; Wang N; Ding X
    J Plant Physiol; 2015 Jun; 181():30-41. PubMed ID: 25974367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning, in silico characterization and expression analysis of TIP subfamily from rice (Oryza sativa L.).
    Balasaheb Karle S; Kumar K; Srivastava S; Suprasanna P
    Gene; 2020 Nov; 761():145043. PubMed ID: 32777530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice.
    Miao J; Yang Z; Zhang D; Wang Y; Xu M; Zhou L; Wang J; Wu S; Yao Y; Du X; Gu F; Gong Z; Gu M; Liang G; Zhou Y
    Plant Biotechnol J; 2019 Mar; 17(3):650-664. PubMed ID: 30160362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.