These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22752075)

  • 1. Ontogeny of hypoxic modulation of cardiac performance and its allometry in the African clawed frog Xenopus laevis.
    Pan TC; Burggren WW
    J Comp Physiol B; 2013 Jan; 183(1):123-33. PubMed ID: 22752075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Onset and early development of hypoxic ventilatory responses and branchial neuroepithelial cells in Xenopus laevis.
    Pan TC; Burggren WW
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Dec; 157(4):382-91. PubMed ID: 20728560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of cardiovascular responses to hypoxia in larvae of the frog Xenopus laevis.
    Fritsche R; Burggren W
    Am J Physiol; 1996 Oct; 271(4 Pt 2):R912-7. PubMed ID: 8897981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a role of heme oxygenase-1 in the control of cardiac function in zebrafish (Danio rerio) larvae exposed to hypoxia.
    Tzaneva V; Perry SF
    J Exp Biol; 2016 May; 219(Pt 10):1563-71. PubMed ID: 26994186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of M2 muscarinic receptor function inhibits development of hypoxic bradycardia and alters cardiac beta-adrenergic sensitivity in larval zebrafish (Danio rerio).
    Steele SL; Lo KH; Li VW; Cheng SH; Ekker M; Perry SF
    Am J Physiol Regul Integr Comp Physiol; 2009 Aug; 297(2):R412-20. PubMed ID: 19515979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac output and peripheral resistance during larval development in the anuran amphibian Xenopus laevis.
    Hou PC; Burggren WW
    Am J Physiol; 1995 Nov; 269(5 Pt 2):R1126-32. PubMed ID: 7503301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiovascular and respiratory developmental plasticity under oxygen depleted environment and in genetically hypoxic zebrafish (Danio rerio).
    Yaqoob N; Schwerte T
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Aug; 156(4):475-84. PubMed ID: 20363352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardio-respiratory ontogeny during chronic carbon monoxide exposure in the clawed frog Xenopus laevis.
    Territo PR; Burggren WW
    J Exp Biol; 1998 May; 201(Pt 9):1461-72. PubMed ID: 9547325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of adrenergic and cholinergic cardiac control in larvae of the African clawed frog Xenopus laevis.
    Jacobsson A; Fritsche R
    Physiol Biochem Zool; 1999; 72(3):328-38. PubMed ID: 10222327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of acute hypoxia at moderate altitude on stroke volume and cardiac output during exercise.
    Fukuda T; Maegawa T; Matsumoto A; Komatsu Y; Nakajima T; Nagai R; Kawahara T
    Int Heart J; 2010 May; 51(3):170-5. PubMed ID: 20558906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ontogeny of cardio-respiratory function under chronically altered gas compositions in Xenopus laevis.
    Territo PR; Altimiras J
    Respir Physiol; 1998 Mar; 111(3):311-23. PubMed ID: 9628236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of hypoxia and of hypoxemia on the development of cardiac activity in zebrafish larvae.
    Jacob E; Drexel M; Schwerte T; Pelster B
    Am J Physiol Regul Integr Comp Physiol; 2002 Oct; 283(4):R911-7. PubMed ID: 12228061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prolonged hypoxia increases survival even in Zebrafish (Danio rerio) showing cardiac arrhythmia.
    Kopp R; Bauer I; Ramalingam A; Egg M; Schwerte T
    PLoS One; 2014; 9(2):e89099. PubMed ID: 24551224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. O2 consumption and heart rate in developing zebrafish (Danio rerio): influence of temperature and ambient O2.
    Barrionuevo WR; Burggren WW
    Am J Physiol; 1999 Feb; 276(2):R505-13. PubMed ID: 9950931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic, respiratory and cardiovascular responses to acute and chronic hypoxic exposure in tadpole shrimp Triops longicaudatus.
    Harper SL; Reiber CL
    J Exp Biol; 2006 May; 209(Pt 9):1639-50. PubMed ID: 16621945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactive effects of development and hypoxia on catecholamine synthesis and cardiac function in zebrafish (Danio rerio).
    Steele SL; Ekker M; Perry SF
    J Comp Physiol B; 2011 May; 181(4):527-38. PubMed ID: 21197535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tribute to P. L. Lutz: a message from the heart--why hypoxic bradycardia in fishes?
    Farrell AP
    J Exp Biol; 2007 May; 210(Pt 10):1715-25. PubMed ID: 17488934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac output in Xenopus laevis tadpoles during development and in response to an adenosine agonist.
    Tang YY; Rovainen CM
    Am J Physiol; 1996 May; 270(5 Pt 2):R997-1004. PubMed ID: 8928932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiorespiratory physiological phenotypic plasticity in developing air-breathing anabantid fishes (
    Mendez-Sanchez JF; Burggren WW
    Physiol Rep; 2017 Aug; 5(15):. PubMed ID: 28778991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of acute and chronic hypoxia on the swimming performance, metabolic capacity and cardiac function of Atlantic cod (Gadus morhua).
    Petersen LH; Gamperl AK
    J Exp Biol; 2010 Mar; 213(5):808-19. PubMed ID: 20154197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.