These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 22752127)
1. Low intensity ultrasound stimulates osteoblast migration at different frequencies. Man J; Shelton RM; Cooper PR; Landini G; Scheven BA J Bone Miner Metab; 2012 Sep; 30(5):602-7. PubMed ID: 22752127 [TBL] [Abstract][Full Text] [Related]
2. Low-intensity low-frequency ultrasound promotes proliferation and differentiation of odontoblast-like cells. Man J; Shelton RM; Cooper PR; Scheven BA J Endod; 2012 May; 38(5):608-13. PubMed ID: 22515888 [TBL] [Abstract][Full Text] [Related]
3. Intensity-related differences in collagen post-translational modification in MC3T3-E1 osteoblasts after exposure to low- and high-intensity pulsed ultrasound. Saito M; Soshi S; Tanaka T; Fujii K Bone; 2004 Sep; 35(3):644-55. PubMed ID: 15336600 [TBL] [Abstract][Full Text] [Related]
4. Ultrasonicated graphene oxide enhances bone and skin wound regeneration. Hussein KH; Abdelhamid HN; Zou X; Woo HM Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():484-492. PubMed ID: 30423733 [TBL] [Abstract][Full Text] [Related]
5. Platelet releasate increases the proliferation and migration of bone marrow-derived cells cultured under osteogenic conditions. Kark LR; Karp JM; Davies JE Clin Oral Implants Res; 2006 Jun; 17(3):321-7. PubMed ID: 16672028 [TBL] [Abstract][Full Text] [Related]
6. IL-6 as a corneal wound healing mediator in an in vitro scratch assay. Arranz-Valsero I; Soriano-Romaní L; García-Posadas L; López-García A; Diebold Y Exp Eye Res; 2014 Aug; 125():183-92. PubMed ID: 24971496 [TBL] [Abstract][Full Text] [Related]
7. Osteocytes exposed to far field of therapeutic ultrasound promotes osteogenic cellular activities in pre-osteoblasts through soluble factors. Fung CH; Cheung WH; Pounder NM; Harrison A; Leung KS Ultrasonics; 2014 Jul; 54(5):1358-65. PubMed ID: 24560187 [TBL] [Abstract][Full Text] [Related]
8. Effects of Periploca forrestii Schltr on wound healing by Src meditated Mek/Erk and PI3K/Akt signals. Li J; Chen L; Xu J; Xie Z; Xu Y; Jiang P; Duan B; Huang X; Feng F; Liu W J Ethnopharmacol; 2019 Jun; 237():116-127. PubMed ID: 30905787 [TBL] [Abstract][Full Text] [Related]
9. Effect of low- and high-intensity pulsed ultrasound on collagen post-translational modifications in MC3T3-E1 osteoblasts. Saito M; Fujii K; Tanaka T; Soshi S Calcif Tissue Int; 2004 Nov; 75(5):384-95. PubMed ID: 15592795 [TBL] [Abstract][Full Text] [Related]
10. Role of Rho GTPase in astrocyte morphology and migratory response during in vitro wound healing. Höltje M; Hoffmann A; Hofmann F; Mucke C; Grosse G; Van Rooijen N; Kettenmann H; Just I; Ahnert-Hilger G J Neurochem; 2005 Dec; 95(5):1237-48. PubMed ID: 16150054 [TBL] [Abstract][Full Text] [Related]
11. Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblasts. Reher P; Harris M; Whiteman M; Hai HK; Meghji S Bone; 2002 Jul; 31(1):236-41. PubMed ID: 12110440 [TBL] [Abstract][Full Text] [Related]
12. Therapeutic ultrasound for osteoradionecrosis: an in vitro comparison between 1 MHz and 45 kHz machines. Reher P; Doan N; Bradnock B; Meghji S; Harris M Eur J Cancer; 1998 Nov; 34(12):1962-8. PubMed ID: 10023323 [TBL] [Abstract][Full Text] [Related]
14. Effect of mitomycin-C on contraction and migration of human nasal mucosa fibroblasts: implications in dacryocystorhinostomy. Kumar V; Ali MJ; Ramachandran C Br J Ophthalmol; 2015 Sep; 99(9):1295-300. PubMed ID: 26061161 [TBL] [Abstract][Full Text] [Related]
15. Photobiomodulation with low-level diode laser promotes osteoblast migration in an in vitro micro wound model. Tschon M; Incerti-Parenti S; Cepollaro S; Checchi L; Fini M J Biomed Opt; 2015 Jul; 20(7):78002. PubMed ID: 26140461 [TBL] [Abstract][Full Text] [Related]
16. Effects of 35 kHz, low-frequency ultrasound application in vitro on human fibroblast morphology and migration patterns. Conner-Kerr T; Malpass G; Steele A; Howlett A Ostomy Wound Manage; 2015 Mar; 61(3):34-41. PubMed ID: 25751849 [TBL] [Abstract][Full Text] [Related]
17. Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy. Bettenworth D; Lenz P; Krausewitz P; Brückner M; Ketelhut S; Domagk D; Kemper B PLoS One; 2014; 9(9):e107317. PubMed ID: 25251440 [TBL] [Abstract][Full Text] [Related]
19. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays. Walter MN; Wright KT; Fuller HR; MacNeil S; Johnson WE Exp Cell Res; 2010 Apr; 316(7):1271-81. PubMed ID: 20206158 [TBL] [Abstract][Full Text] [Related]
20. Effects of an injectable platelet-rich fibrin on osteoblast behavior and bone tissue formation in comparison to platelet-rich plasma. Wang X; Zhang Y; Choukroun J; Ghanaati S; Miron RJ Platelets; 2018 Jan; 29(1):48-55. PubMed ID: 28351189 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]