These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 22752181)
1. S-Mercuration of rat sorbitol dehydrogenase by methylmercury causes its aggregation and the release of the zinc ion from the active site. Kanda H; Toyama T; Shinohara-Kanda A; Iwamatsu A; Shinkai Y; Kaji T; Kikushima M; Kumagai Y Arch Toxicol; 2012 Nov; 86(11):1693-702. PubMed ID: 22752181 [TBL] [Abstract][Full Text] [Related]
2. Catalytic mechanism of Zn2+-dependent polyol dehydrogenases: kinetic comparison of sheep liver sorbitol dehydrogenase with wild-type and Glu154-->Cys forms of yeast xylitol dehydrogenase. Klimacek M; Hellmer H; Nidetzky B Biochem J; 2007 Jun; 404(3):421-9. PubMed ID: 17343568 [TBL] [Abstract][Full Text] [Related]
3. Structure of zinc-independent sorbitol dehydrogenase from Rhodobacter sphaeroides at 2.4 A resolution. Philippsen A; Schirmer T; Stein MA; Giffhorn F; Stetefeld J Acta Crystallogr D Biol Crystallogr; 2005 Apr; 61(Pt 4):374-9. PubMed ID: 15805591 [TBL] [Abstract][Full Text] [Related]
4. Zinc coordination in mammalian sorbitol dehydrogenase. Replacement of putative zinc ligands by site-directed mutagenesis. Karlsson C; Höög JO Eur J Biochem; 1993 Aug; 216(1):103-7. PubMed ID: 8365396 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of sorbitol dehydrogenase. Johansson K; El-Ahmad M; Kaiser C; Jörnvall H; Eklund H; Höög J; Ramaswamy S Chem Biol Interact; 2001 Jan; 130-132(1-3):351-8. PubMed ID: 11306057 [TBL] [Abstract][Full Text] [Related]
6. S-Mercuration of ubiquitin carboxyl-terminal hydrolase L1 through Cys152 by methylmercury causes inhibition of its catalytic activity and reduction of monoubiquitin levels in SH-SY5Y cells. Toyama T; Abiko Y; Katayama Y; Kaji T; Kumagai Y J Toxicol Sci; 2015 Dec; 40(6):887-93. PubMed ID: 26558469 [TBL] [Abstract][Full Text] [Related]
8. Subcellular localization and vacuolar targeting of sorbitol dehydrogenase in apple seed. Wang XL; Hu ZY; You CX; Kong XZ; Shi XP Plant Sci; 2013 Sep; 210():36-45. PubMed ID: 23849111 [TBL] [Abstract][Full Text] [Related]
9. Reduction of arginase I activity and manganese levels in the liver during exposure of rats to methylmercury: a possible mechanism. Kanda H; Sumi D; Endo A; Toyama T; Chen CL; Kikushima M; Kumagai Y Arch Toxicol; 2008 Nov; 82(11):803-8. PubMed ID: 18488197 [TBL] [Abstract][Full Text] [Related]
10. S-mercuration of cellular proteins by methylmercury and its toxicological implications. Kanda H; Shinkai Y; Kumagai Y J Toxicol Sci; 2014; 39(5):687-700. PubMed ID: 25242398 [TBL] [Abstract][Full Text] [Related]
11. Identification of proteins separated by one-dimensional sodium dodecyl sulfate/polyacrylamide gel electrophoresis with matrix-assisted laser desorption/ionization ion trap mass spectrometry; comparison with matrix-assisted laser desorption/ionization time-of-flight mass fingerprinting. Zeng R; Chen YB; Shao XX; Shieh CH; Miller K; Tran H; Xia QC Rapid Commun Mass Spectrom; 2003; 17(17):1995-2004. PubMed ID: 12913863 [TBL] [Abstract][Full Text] [Related]
12. A competitive chemical-proteomic platform to identify zinc-binding cysteines. Pace NJ; Weerapana E ACS Chem Biol; 2014 Jan; 9(1):258-65. PubMed ID: 24111988 [TBL] [Abstract][Full Text] [Related]
13. Functional assignment of gene AAC16202.1 from Rhodobacter capsulatus SB1003: new insights into the bacterial SDR sorbitol dehydrogenases family. Sola-Carvajal A; García-García MI; Sánchez-Carrón G; García-Carmona F; Sánchez-Ferrer A Biochimie; 2012 Nov; 94(11):2407-15. PubMed ID: 22771766 [TBL] [Abstract][Full Text] [Related]
14. Purification and characterization of a NAD+-dependent sorbitol dehydrogenase from Japanese pear fruit. Oura Y; Yamada K; Shiratake K; Yamaki S Phytochemistry; 2000 Jul; 54(6):567-72. PubMed ID: 10963448 [TBL] [Abstract][Full Text] [Related]
15. [Influence in vivo of sorbitol on sorbitol dehydrogenase activity]. Treves C; Casey H; Bianchi A; Firenzuoli AM; Zanobini A Boll Soc Ital Biol Sper; 1979 Nov; 55(22):2387-90. PubMed ID: 549606 [TBL] [Abstract][Full Text] [Related]
16. X-ray crystallographic and kinetic studies of human sorbitol dehydrogenase. Pauly TA; Ekstrom JL; Beebe DA; Chrunyk B; Cunningham D; Griffor M; Kamath A; Lee SE; Madura R; Mcguire D; Subashi T; Wasilko D; Watts P; Mylari BL; Oates PJ; Adams PD; Rath VL Structure; 2003 Sep; 11(9):1071-85. PubMed ID: 12962626 [TBL] [Abstract][Full Text] [Related]
17. Structural and functional properties of a yeast xylitol dehydrogenase, a Zn2+-containing metalloenzyme similar to medium-chain sorbitol dehydrogenases. Lunzer R; Mamnun Y; Haltrich D; Kulbe KD; Nidetzky B Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):91-9. PubMed ID: 9806889 [TBL] [Abstract][Full Text] [Related]
18. Characterization of covalently inhibited extracellular lipase from Streptomyces rimosus by matrix-assisted laser desorption/ionization time-of-flight and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight mass spectrometry: localization of the active site serine. Zehl M; Lescić I; Abramić M; Rizzi A; Kojić-Prodić B; Allmaier G J Mass Spectrom; 2004 Dec; 39(12):1474-83. PubMed ID: 15578758 [TBL] [Abstract][Full Text] [Related]
19. Autodisplay of active sorbitol dehydrogenase (SDH) yields a whole cell biocatalyst for the synthesis of rare sugars. Jose J; von Schwichow S Chembiochem; 2004 Apr; 5(4):491-9. PubMed ID: 15185373 [TBL] [Abstract][Full Text] [Related]
20. Identification of the two zinc-bound cysteines in the ferric uptake regulation protein from Escherichia coli: chemical modification and mass spectrometry analysis. Gonzalez de Peredo A; Saint-Pierre C; Adrait A; Jacquamet L; Latour JM; Michaud-Soret I; Forest E Biochemistry; 1999 Jun; 38(26):8582-9. PubMed ID: 10387106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]