BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 22752583)

  • 1. Keap1-nrf2 signaling: a target for cancer prevention by sulforaphane.
    Kensler TW; Egner PA; Agyeman AS; Visvanathan K; Groopman JD; Chen JG; Chen TY; Fahey JW; Talalay P
    Top Curr Chem; 2013; 329():163-77. PubMed ID: 22752583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the Keap1/Nrf2 system by chemopreventive sulforaphane: implications of posttranslational modifications.
    Keum YS
    Ann N Y Acad Sci; 2011 Jul; 1229():184-9. PubMed ID: 21793854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane.
    Hong F; Freeman ML; Liebler DC
    Chem Res Toxicol; 2005 Dec; 18(12):1917-26. PubMed ID: 16359182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting NRF2 signaling for cancer chemoprevention.
    Kwak MK; Kensler TW
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):66-76. PubMed ID: 19732782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of chemical activation of Nrf2.
    Li Y; Paonessa JD; Zhang Y
    PLoS One; 2012; 7(4):e35122. PubMed ID: 22558124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant sulforaphane and sensitizer trinitrobenzene sulfonate induce carboxylesterase-1 through a novel element transactivated by nuclear factor-E2 related factor-2.
    Chen YT; Shi D; Yang D; Yan B
    Biochem Pharmacol; 2012 Sep; 84(6):864-71. PubMed ID: 22776248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frugal chemoprevention: targeting Nrf2 with foods rich in sulforaphane.
    Yang L; Palliyaguru DL; Kensler TW
    Semin Oncol; 2016 Feb; 43(1):146-153. PubMed ID: 26970133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KEAP1 and Done? Targeting the NRF2 Pathway with Sulforaphane.
    Dinkova-Kostova AT; Fahey JW; Kostov RV; Kensler TW
    Trends Food Sci Technol; 2017 Nov; 69(Pt B):257-269. PubMed ID: 29242678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Keap1 eye on the target: chemoprevention of liver cancer.
    Yates MS; Kensler TW
    Acta Pharmacol Sin; 2007 Sep; 28(9):1331-42. PubMed ID: 17723167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heteroaromatic 4-arylquinols are novel inducers of nuclear factor-erythroid 2-related factor 2 (Nrf2).
    Wong DP; Wells G; Hagen T
    Eur J Pharmacol; 2010 Sep; 643(2-3):188-94. PubMed ID: 20599909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary Intake of Sulforaphane-Rich Broccoli Sprout Extracts during Juvenile and Adolescence Can Prevent Phencyclidine-Induced Cognitive Deficits at Adulthood.
    Shirai Y; Fujita Y; Hashimoto R; Ohi K; Yamamori H; Yasuda Y; Ishima T; Suganuma H; Ushida Y; Takeda M; Hashimoto K
    PLoS One; 2015; 10(6):e0127244. PubMed ID: 26107664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the metabolism of airborne pollutants by glucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong, China.
    Kensler TW; Ng D; Carmella SG; Chen M; Jacobson LP; Muñoz A; Egner PA; Chen JG; Qian GS; Chen TY; Fahey JW; Talalay P; Groopman JD; Yuan JM; Hecht SS
    Carcinogenesis; 2012 Jan; 33(1):101-7. PubMed ID: 22045030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of keap1 cysteine residues by sulforaphane.
    Hu C; Eggler AL; Mesecar AD; van Breemen RB
    Chem Res Toxicol; 2011 Apr; 24(4):515-21. PubMed ID: 21391649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2.
    Eggler AL; Liu G; Pezzuto JM; van Breemen RB; Mesecar AD
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10070-5. PubMed ID: 16006525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex.
    Zhang DD; Lo SC; Cross JV; Templeton DJ; Hannink M
    Mol Cell Biol; 2004 Dec; 24(24):10941-53. PubMed ID: 15572695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic-mediated activation of the Nrf2-Keap1 antioxidant pathway.
    Lau A; Whitman SA; Jaramillo MC; Zhang DD
    J Biochem Mol Toxicol; 2013 Feb; 27(2):99-105. PubMed ID: 23188707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles.
    Turpaev KT
    Biochemistry (Mosc); 2013 Feb; 78(2):111-26. PubMed ID: 23581983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer.
    Hayes JD; McMahon M
    Trends Biochem Sci; 2009 Apr; 34(4):176-88. PubMed ID: 19321346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of aldo-keto reductases as NRF2-target marker genes in human cells.
    Jung KA; Choi BH; Nam CW; Song M; Kim ST; Lee JY; Kwak MK
    Toxicol Lett; 2013 Mar; 218(1):39-49. PubMed ID: 23305850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.