These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22752667)

  • 1. Cardiomyocytes from late embryos and neonates do optimal work and striate best on substrates with tissue-level elasticity: metrics and mathematics.
    Majkut SF; Discher DE
    Biomech Model Mechanobiol; 2012 Nov; 11(8):1219-25. PubMed ID: 22752667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The contribution of cellular mechanotransduction to cardiomyocyte form and function.
    Sheehy SP; Grosberg A; Parker KK
    Biomech Model Mechanobiol; 2012 Nov; 11(8):1227-39. PubMed ID: 22772714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic culture yields engineered myocardium with near-adult functional output.
    Jackman CP; Carlson AL; Bursac N
    Biomaterials; 2016 Dec; 111():66-79. PubMed ID: 27723557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of substrate mechanics on cardiomyocyte maturation and growth.
    Tallawi M; Rai R; Boccaccini AR; Aifantis KE
    Tissue Eng Part B Rev; 2015 Feb; 21(1):157-65. PubMed ID: 25148904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical analysis of the adaptive contractile behaviour of a single cardiomyocyte cultured on elastic substrates with varying stiffness.
    Tracqui P; Ohayon J; Boudou T
    J Theor Biol; 2008 Nov; 255(1):92-105. PubMed ID: 18721813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heart-specific stiffening in early embryos parallels matrix and myosin expression to optimize beating.
    Majkut S; Idema T; Swift J; Krieger C; Liu A; Discher DE
    Curr Biol; 2013 Dec; 23(23):2434-9. PubMed ID: 24268417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Substrate Stiffness on Cardiomyocyte Action Potentials.
    Boothe SD; Myers JD; Pok S; Sun J; Xi Y; Nieto RM; Cheng J; Jacot JG
    Cell Biochem Biophys; 2016 Dec; 74(4):527-535. PubMed ID: 27722948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mathematical models for the study of electromechanical and mechanoelectrical coupling in the myocardium].
    Solov'eva OE; Konovalov PV; Vikulova NA; Katsnel'son LB; Markhasin VS
    Ross Fiziol Zh Im I M Sechenova; 2007 Sep; 93(9):945-68. PubMed ID: 18030795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global organization of dynamics in cultured cardiac monolayers.
    Bub G; Shrier A; Glass L
    Chaos; 2004 Dec; 14(4):S14. PubMed ID: 15568898
    [No Abstract]   [Full Text] [Related]  

  • 10. Load dependency in force-length relations in isolated single cardiomyocytes.
    Iribe G; Kaneko T; Yamaguchi Y; Naruse K
    Prog Biophys Mol Biol; 2014 Aug; 115(2-3):103-14. PubMed ID: 24976617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. I-Wire Heart-on-a-Chip II: Biomechanical analysis of contractile, three-dimensional cardiomyocyte tissue constructs.
    Schroer AK; Shotwell MS; Sidorov VY; Wikswo JP; Merryman WD
    Acta Biomater; 2017 Jan; 48():79-87. PubMed ID: 27818306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Embryonic stem cells form an organized, functional cardiac conduction system in vitro.
    White SM; Claycomb WC
    Am J Physiol Heart Circ Physiol; 2005 Feb; 288(2):H670-9. PubMed ID: 15471973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical model of mouse embryonic cardiomyocyte excitation-contraction coupling.
    Korhonen T; Rapila R; Tavi P
    J Gen Physiol; 2008 Oct; 132(4):407-19. PubMed ID: 18794378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Contractile apparatus organization of cardiomyocytes upon their cultivation in collagen gels].
    Bil'diug NB; Iudintseva NM; Pinaev GP
    Tsitologiia; 2014; 56(11):822-7. PubMed ID: 25707209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte.
    Cortassa S; Aon MA; O'Rourke B; Jacques R; Tseng HJ; Marbán E; Winslow RL
    Biophys J; 2006 Aug; 91(4):1564-89. PubMed ID: 16679365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward improved myocardial maturity in an organ-on-chip platform with immature cardiac myocytes.
    Sheehy SP; Grosberg A; Qin P; Behm DJ; Ferrier JP; Eagleson MA; Nesmith AP; Krull D; Falls JG; Campbell PH; McCain ML; Willette RN; Hu E; Parker KK
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1643-1656. PubMed ID: 28343439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic AFM elastography reveals phase dependent mechanical heterogeneity of beating cardiac myocytes.
    Azeloglu EU; Costa KD
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7180-3. PubMed ID: 19965272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating.
    Engler AJ; Carag-Krieger C; Johnson CP; Raab M; Tang HY; Speicher DW; Sanger JW; Sanger JM; Discher DE
    J Cell Sci; 2008 Nov; 121(Pt 22):3794-802. PubMed ID: 18957515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelastic Fitzhugh-Nagumo models.
    Bini D; Cherubini C; Filippi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041929. PubMed ID: 16383442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Multiscale modeling of cardiac electrical activity].
    Comtois P; Potse M; Vinet A
    Med Sci (Paris); 2010 Jan; 26(1):57-64. PubMed ID: 20132776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.