These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 22752815)
1. Bioremoval of diethylketone by the synergistic combination of microorganisms and clays: uptake, removal and kinetic studies. Quintelas C; Costa F; Tavares T Environ Sci Pollut Res Int; 2013 Mar; 20(3):1374-83. PubMed ID: 22752815 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of biodegradation of diethylketone by Arthrobacter viscosus. Costa F; Quintelas C; Tavares T Biodegradation; 2012 Feb; 23(1):81-92. PubMed ID: 21681520 [TBL] [Abstract][Full Text] [Related]
3. The effect of clay treatment on remediation of diethylketone contaminated wastewater: uptake, equilibrium and kinetic studies. Quintelas C; Figueiredo H; Tavares T J Hazard Mater; 2011 Feb; 186(2-3):1241-8. PubMed ID: 21176863 [TBL] [Abstract][Full Text] [Related]
4. Sorption studies of diethylketone in the presence of Al Costa F; Tavares T Environ Technol; 2017 Nov; 38(22):2811-2823. PubMed ID: 28054835 [TBL] [Abstract][Full Text] [Related]
5. Pilot-scale sorption studies of diethylketone in the presence of Cd Costa F; Tavares T Environ Technol; 2019 Mar; 40(8):942-953. PubMed ID: 29187066 [TBL] [Abstract][Full Text] [Related]
6. Modelling the adsorption of mercury onto natural and aluminium pillared clays. Eloussaief M; Sdiri A; Benzina M Environ Sci Pollut Res Int; 2013 Jan; 20(1):469-79. PubMed ID: 22532118 [TBL] [Abstract][Full Text] [Related]
8. Removal of crude oil polycyclic aromatic hydrocarbons via organoclay-microbe-oil interactions. Ugochukwu UC; Fialips CI Chemosphere; 2017 May; 174():28-38. PubMed ID: 28157606 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous adsorption and degradation of Zn(2+) and Cu (2+) from wastewaters using nanoscale zero-valent iron impregnated with clays. Shi LN; Zhou Y; Chen Z; Megharaj M; Naidu R Environ Sci Pollut Res Int; 2013 Jun; 20(6):3639-48. PubMed ID: 23114838 [TBL] [Abstract][Full Text] [Related]
10. Microbial degradation of crude oil hydrocarbons on organoclay minerals. Ugochukwu UC; Manning DA; Fialips CI J Environ Manage; 2014 Nov; 144():197-202. PubMed ID: 24956464 [TBL] [Abstract][Full Text] [Related]
11. Amitriptyline removal using palygorskite clay. Tsai YL; Chang PH; Gao ZY; Xu XY; Chen YH; Wang ZH; Chen XY; Yang ZY; Wang TH; Jean JS; Li Z; Jiang WT Chemosphere; 2016 Jul; 155():292-299. PubMed ID: 27131449 [TBL] [Abstract][Full Text] [Related]
12. Oil biodegradation: Interactions of artificial marine snow, clay particles, oil and Corexit. Rahsepar S; Langenhoff AAM; Smit MPJ; van Eenennaam JS; Murk AJ; Rijnaarts HHM Mar Pollut Bull; 2017 Dec; 125(1-2):186-191. PubMed ID: 28821355 [TBL] [Abstract][Full Text] [Related]
13. Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays. Sánchez-Martín MJ; Dorado MC; del Hoyo C; Rodríguez-Cruz MS J Hazard Mater; 2008 Jan; 150(1):115-23. PubMed ID: 17532126 [TBL] [Abstract][Full Text] [Related]
14. Characterizing the capacity of hyporheic sediments to attenuate groundwater nitrate loads by adsorption. Meghdadi A Water Res; 2018 Sep; 140():364-376. PubMed ID: 29751318 [TBL] [Abstract][Full Text] [Related]
15. Cationic polymer and clay or metal oxide combinations for natural organic matter removal. Bolto B; Dixon D; Eldridge R; King S Water Res; 2001 Aug; 35(11):2669-76. PubMed ID: 11456166 [TBL] [Abstract][Full Text] [Related]
16. Removal of sulfadiazine and ciprofloxacin by clays and manganese oxides: Coupled sorption-oxidation kinetic model. Septian A; Shin WS Chemosphere; 2020 Jul; 250():126251. PubMed ID: 32113100 [TBL] [Abstract][Full Text] [Related]
17. Biodegradation of crude oil saturated fraction supported on clays. Ugochukwu UC; Jones MD; Head IM; Manning DA; Fialips CI Biodegradation; 2014 Feb; 25(1):153-65. PubMed ID: 23670057 [TBL] [Abstract][Full Text] [Related]
18. Biosorption of Cr(VI) by three different bacterial species supported on granular activated carbon: a comparative study. Quintelas C; Fernandes B; Castro J; Figueiredo H; Tavares T J Hazard Mater; 2008 May; 153(1-2):799-809. PubMed ID: 17933461 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the Influence of Clay Montmorillonite Content on the Aqueous Uptake of Lead and Zinc. Mu'azu ND Water Environ Res; 2018 Sep; 90(9):771-782. PubMed ID: 29891021 [TBL] [Abstract][Full Text] [Related]
20. Impacts of Pantoea agglomerans strain and cation-modified clay minerals on the adsorption and biodegradation of phenanthrene. Tao K; Zhao S; Gao P; Wang L; Jia H Ecotoxicol Environ Saf; 2018 Oct; 161():237-244. PubMed ID: 29886310 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]