These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 22752843)
1. Comparative analysis of stability and toxicity profile of three differently capped gold nanoparticles for biomedical usage. Das S; Debnath N; Mitra S; Datta A; Goswami A Biometals; 2012 Oct; 25(5):1009-22. PubMed ID: 22752843 [TBL] [Abstract][Full Text] [Related]
2. Nanoparticle-protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces. Boulos SP; Davis TA; Yang JA; Lohse SE; Alkilany AM; Holland LA; Murphy CJ Langmuir; 2013 Dec; 29(48):14984-96. PubMed ID: 24215427 [TBL] [Abstract][Full Text] [Related]
3. In situ synthesis of water dispersible bovine serum albumin capped gold and silver nanoparticles and their cytocompatibility studies. Murawala P; Phadnis SM; Bhonde RR; Prasad BL Colloids Surf B Biointerfaces; 2009 Oct; 73(2):224-8. PubMed ID: 19570660 [TBL] [Abstract][Full Text] [Related]
4. Gold nanoparticles alter parameters of oxidative stress and energy metabolism in organs of adult rats. Ferreira GK; Cardoso E; Vuolo FS; Michels M; Zanoni ET; Carvalho-Silva M; Gomes LM; Dal-Pizzol F; Rezin GT; Streck EL; Paula MM Biochem Cell Biol; 2015 Dec; 93(6):548-57. PubMed ID: 26583437 [TBL] [Abstract][Full Text] [Related]
5. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine. Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943 [TBL] [Abstract][Full Text] [Related]
6. Quantitative biokinetics and systemic translocation of various gold nanostructures are highly dependent on their size and shape. Zhang J; Nie X; Ji Y; Liu Y; Wu X; Chen C; Fang X J Nanosci Nanotechnol; 2014 Jun; 14(6):4124-38. PubMed ID: 24738361 [TBL] [Abstract][Full Text] [Related]
8. Morphological effect of gold nanoparticles on the adsorption of bovine serum albumin. Chaudhary A; Gupta A; Khan S; Nandi CK Phys Chem Chem Phys; 2014 Oct; 16(38):20471-82. PubMed ID: 25140357 [TBL] [Abstract][Full Text] [Related]
9. Colloidal stability of citrate and mercaptoacetic acid capped gold nanoparticles upon lyophilization: effect of capping ligand attachment and type of cryoprotectants. Alkilany AM; Abulateefeh SR; Mills KK; Yaseen AI; Hamaly MA; Alkhatib HS; Aiedeh KM; Stone JW Langmuir; 2014 Nov; 30(46):13799-808. PubMed ID: 25356538 [TBL] [Abstract][Full Text] [Related]
10. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles. Taylor U; Klein S; Petersen S; Kues W; Barcikowski S; Rath D Cytometry A; 2010 May; 77(5):439-46. PubMed ID: 20104575 [TBL] [Abstract][Full Text] [Related]
11. Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging. Gao J; Huang X; Liu H; Zan F; Ren J Langmuir; 2012 Mar; 28(9):4464-71. PubMed ID: 22276658 [TBL] [Abstract][Full Text] [Related]
12. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. Maiorano G; Sabella S; Sorce B; Brunetti V; Malvindi MA; Cingolani R; Pompa PP ACS Nano; 2010 Dec; 4(12):7481-91. PubMed ID: 21082814 [TBL] [Abstract][Full Text] [Related]
13. Comparative toxicity evaluation of flower-shaped and spherical gold nanoparticles on human endothelial cells. Sultana S; Djaker N; Boca-Farcau S; Salerno M; Charnaux N; Astilean S; Hlawaty H; de la Chapelle ML Nanotechnology; 2015 Feb; 26(5):055101. PubMed ID: 25573907 [TBL] [Abstract][Full Text] [Related]
14. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Lasagna-Reeves C; Gonzalez-Romero D; Barria MA; Olmedo I; Clos A; Sadagopa Ramanujam VM; Urayama A; Vergara L; Kogan MJ; Soto C Biochem Biophys Res Commun; 2010 Mar; 393(4):649-55. PubMed ID: 20153731 [TBL] [Abstract][Full Text] [Related]
15. Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin. Chakraborty S; Joshi P; Shanker V; Ansari ZA; Singh SP; Chakrabarti P Langmuir; 2011 Jun; 27(12):7722-31. PubMed ID: 21591651 [TBL] [Abstract][Full Text] [Related]
16. Viscoelastic study of the adsorption of bovine serum albumin on gold and its dependence on pH. Figueira VB; Jones JP J Colloid Interface Sci; 2008 Sep; 325(1):107-13. PubMed ID: 18590911 [TBL] [Abstract][Full Text] [Related]
17. Detection of non-cross-linking interaction between DNA-modified gold nanoparticles and a DNA-modified flat gold surface using surface plasmon resonance imaging on a microchip. Sato Y; Hosokawa K; Maeda M Colloids Surf B Biointerfaces; 2008 Mar; 62(1):71-6. PubMed ID: 17976962 [TBL] [Abstract][Full Text] [Related]
18. PST-Gold nanoparticle as an effective anticancer agent with immunomodulatory properties. Joseph MM; Aravind SR; Varghese S; Mini S; Sreelekha TT Colloids Surf B Biointerfaces; 2013 Apr; 104():32-9. PubMed ID: 23298585 [TBL] [Abstract][Full Text] [Related]
19. Increased stability of mercapto alkane functionalized Au nanoparticles towards DNA sensing. Jans H; Stakenborg T; Jans K; Van de Broek B; Peeters S; Bonroy K; Lagae L; Borghs G; Maes G Nanotechnology; 2010 Jul; 21(28):285608. PubMed ID: 20585165 [TBL] [Abstract][Full Text] [Related]
20. A comparison of poly-ethylene-glycol-coated and uncoated gold nanoparticle-mediated hepatotoxicity and oxidative stress in Sprague Dawley rats. Patlolla AK; Kumari SA; Tchounwou PB Int J Nanomedicine; 2019; 14():639-647. PubMed ID: 30697047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]