These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 22752965)
1. Stormflow hydrochemistry of a river draining an abandoned metal mine: the Afon Twymyn, central Wales. Byrne P; Reid I; Wood PJ Environ Monit Assess; 2013 Mar; 185(3):2817-32. PubMed ID: 22752965 [TBL] [Abstract][Full Text] [Related]
2. Mine water geochemistry and metal flux in a major historic Pb-Zn-F orefield, the Yorkshire Pennines, UK. Jones A; Rogerson M; Greenway G; Potter HA; Mayes WM Environ Sci Pollut Res Int; 2013 Nov; 20(11):7570-81. PubMed ID: 23386384 [TBL] [Abstract][Full Text] [Related]
3. Environmental and socioeconomic assessment of impacts by mining activities-a case study in the Certej River catchment, Western Carpathians, Romania. Zobrist J; Sima M; Dogaru D; Senila M; Yang H; Popescu C; Roman C; Bela A; Frei L; Dold B; Balteanu D Environ Sci Pollut Res Int; 2009 Aug; 16 Suppl 1():S14-26. PubMed ID: 19159960 [TBL] [Abstract][Full Text] [Related]
4. Inventory of aquatic contaminant flux arising from historical metal mining in England and Wales. Mayes WM; Potter HA; Jarvis AP Sci Total Environ; 2010 Aug; 408(17):3576-83. PubMed ID: 20483448 [TBL] [Abstract][Full Text] [Related]
5. Hydrochemical evaluation of the influences of mining activities on river water chemistry in central northern Mongolia. Batsaikhan B; Kwon JS; Kim KH; Lee YJ; Lee JH; Badarch M; Yun ST Environ Sci Pollut Res Int; 2017 Jan; 24(2):2019-2034. PubMed ID: 27807785 [TBL] [Abstract][Full Text] [Related]
6. Abandoned metal mines and their impact on receiving waters: A case study from Southwest England. Beane SJ; Comber SD; Rieuwerts J; Long P Chemosphere; 2016 Jun; 153():294-306. PubMed ID: 27023117 [TBL] [Abstract][Full Text] [Related]
7. Hydrochemical characteristics of mine waters from abandoned mining sites in Serbia and their impact on surface water quality. Atanacković N; Dragišić V; Stojković J; Papić P; Zivanović V Environ Sci Pollut Res Int; 2013 Nov; 20(11):7615-26. PubMed ID: 23872888 [TBL] [Abstract][Full Text] [Related]
8. Prospect of abandoned metal mining sites from a hydrogeochemical perspective. Kusin FM; Sulong NA; Affandi FNA; Molahid VLM; Jusop S Environ Sci Pollut Res Int; 2021 Jan; 28(3):2678-2695. PubMed ID: 32886310 [TBL] [Abstract][Full Text] [Related]
9. Changes in macroinvertebrate community structure provide evidence of neutral mine drainage impacts. Byrne P; Reid I; Wood PJ Environ Sci Process Impacts; 2013 Feb; 15(2):393-404. PubMed ID: 25208704 [TBL] [Abstract][Full Text] [Related]
10. Mobility and natural attenuation of metals and arsenic in acidic waters of the drainage system of Timok River from Bor copper mines (Serbia) to Danube River. Đorđievski S; Ishiyama D; Ogawa Y; Stevanović Z Environ Sci Pollut Res Int; 2018 Sep; 25(25):25005-25019. PubMed ID: 29934829 [TBL] [Abstract][Full Text] [Related]
11. Combined use of native and transplanted moss for post-mining characterization of metal(loid) river contamination. Monaci F; Ancora S; Bianchi N; Bonini I; Paoli L; Loppi S Sci Total Environ; 2021 Jan; 750():141669. PubMed ID: 33182204 [TBL] [Abstract][Full Text] [Related]
12. Long term metal release and acid generation in abandoned mine wastes containing metal-sulphides. Nieva NE; Borgnino L; García MG Environ Pollut; 2018 Nov; 242(Pt A):264-276. PubMed ID: 29990934 [TBL] [Abstract][Full Text] [Related]
13. Understanding the mobilisation of metal pollution associated with historical mining in a carboniferous upland catchment. Valencia-Avellan M; Slack R; Stockdale A; Mortimer RJG Environ Sci Process Impacts; 2017 Aug; 19(8):1061-1074. PubMed ID: 28752871 [TBL] [Abstract][Full Text] [Related]
14. Seasonal and spatial variation of diffuse (non-point) source zinc pollution in a historically metal mined river catchment, UK. Gozzard E; Mayes WM; Potter HA; Jarvis AP Environ Pollut; 2011 Oct; 159(10):3113-22. PubMed ID: 21561697 [TBL] [Abstract][Full Text] [Related]
15. Challenges with tracing the fate and speciation of mine-derived metals in turbid river systems: implications for bioavailability. Cresswell T; Smith RE; Nugegoda D; Simpson SL Environ Sci Pollut Res Int; 2013 Nov; 20(11):7803-14. PubMed ID: 23990258 [TBL] [Abstract][Full Text] [Related]
16. Sediment Metal Concentration Survey Along the Mine-Affected Molonglo River, NSW, Australia. Wadige CP; Taylor AM; Krikowa F; Maher WA Arch Environ Contam Toxicol; 2016 Apr; 70(3):572-82. PubMed ID: 26795293 [TBL] [Abstract][Full Text] [Related]
17. The influence of the scale of mining activity and mine site remediation on the contamination legacy of historical metal mining activity. Bird G Environ Sci Pollut Res Int; 2016 Dec; 23(23):23456-23466. PubMed ID: 27613630 [TBL] [Abstract][Full Text] [Related]
18. Acid mine drainage in the Iberian Pyrite Belt: 1. Hydrochemical characteristics and pollutant load of the Tinto and Odiel rivers. Nieto JM; Sarmiento AM; Canovas CR; Olias M; Ayora C Environ Sci Pollut Res Int; 2013 Nov; 20(11):7509-19. PubMed ID: 23589239 [TBL] [Abstract][Full Text] [Related]
19. Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis. Ferati F; Kerolli-Mustafa M; Kraja-Ylli A Environ Monit Assess; 2015 Jun; 187(6):338. PubMed ID: 25958086 [TBL] [Abstract][Full Text] [Related]
20. Hydrogeochemical characteristics of the Tinto and Odiel Rivers (SW Spain). Factors controlling metal contents. Cánovas CR; Olías M; Nieto JM; Sarmiento AM; Cerón JC Sci Total Environ; 2007 Feb; 373(1):363-82. PubMed ID: 17207846 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]