BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22753068)

  • 41. Genetic and biochemical dissection of a HisKA domain identifies residues required exclusively for kinase and phosphatase activities.
    Willett JW; Kirby JR
    PLoS Genet; 2012; 8(11):e1003084. PubMed ID: 23226719
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus xanthus.
    Petters T; Zhang X; Nesper J; Treuner-Lange A; Gomez-Santos N; Hoppert M; Jenal U; Søgaard-Andersen L
    Mol Microbiol; 2012 Apr; 84(1):147-65. PubMed ID: 22394314
    [TBL] [Abstract][Full Text] [Related]  

  • 43. FrzZ, a dual CheY-like response regulator, functions as an output for the Frz chemosensory pathway of Myxococcus xanthus.
    Inclán YF; Vlamakis HC; Zusman DR
    Mol Microbiol; 2007 Jul; 65(1):90-102. PubMed ID: 17581122
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Timing Is Everything: Impact of Naturally Occurring
    Sloan TJ; Murray E; Yokoyama M; Massey RC; Chan WC; Bonev BB; Williams P
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31358609
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Specificity residues determine binding affinity for two-component signal transduction systems.
    Willett JW; Tiwari N; Müller S; Hummels KR; Houtman JC; Fuentes EJ; Kirby JR
    mBio; 2013 Nov; 4(6):e00420-13. PubMed ID: 24194534
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A cascade of coregulating enhancer binding proteins initiates and propagates a multicellular developmental program.
    Giglio KM; Caberoy N; Suen G; Kaiser D; Garza AG
    Proc Natl Acad Sci U S A; 2011 Aug; 108(32):E431-9. PubMed ID: 21670274
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of a protein Ser/Thr kinase cascade that regulates essential transcriptional activators in Myxococcus xanthus development.
    Nariya H; Inouye S
    Mol Microbiol; 2005 Oct; 58(2):367-79. PubMed ID: 16194226
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The response regulator PhoP4 is required for late developmental events in Myxococcus xanthus.
    Pham VD; Shebelut CW; Jose IR; Hodgson DA; Whitworth DE; Singer M
    Microbiology (Reading); 2006 Jun; 152(Pt 6):1609-1620. PubMed ID: 16735725
    [TBL] [Abstract][Full Text] [Related]  

  • 49. HthA, a putative DNA-binding protein, and HthB are important for fruiting body morphogenesis in Myxococcus xanthus.
    Nielsen M; Rasmussen AA; Ellehauge E; Treuner-Lange A; Søgaard-Andersen L
    Microbiology (Reading); 2004 Jul; 150(Pt 7):2171-2183. PubMed ID: 15256560
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A CheW homologue is required for Myxococcus xanthus fruiting body development, social gliding motility, and fibril biogenesis.
    Bellenger K; Ma X; Shi W; Yang Z
    J Bacteriol; 2002 Oct; 184(20):5654-60. PubMed ID: 12270823
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bacterial development in the fast lane.
    Kroos L
    J Bacteriol; 2008 Jul; 190(13):4373-6. PubMed ID: 18469109
    [No Abstract]   [Full Text] [Related]  

  • 52. Developmental aggregation of Myxococcus xanthus requires frgA, an frz-related gene.
    Cho K; Treuner-Lange A; O'Connor KA; Zusman DR
    J Bacteriol; 2000 Dec; 182(23):6614-21. PubMed ID: 11073903
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development.
    Nariya H; Inouye S
    Mol Microbiol; 2006 Jun; 60(5):1205-17. PubMed ID: 16689796
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Suppressor mutations reveal an NtrC-like response regulator, NmpR, for modulation of Type-IV Pili-dependent motility in Myxococcus xanthus.
    Bretl DJ; Ladd KM; Atkinson SN; Müller S; Kirby JR
    PLoS Genet; 2018 Oct; 14(10):e1007714. PubMed ID: 30346960
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulating factors for the Pkn4 kinase cascade in regulating 6-phosphofructokinase in Myxococcus xanthus.
    Nariya H; Inouye S
    Mol Microbiol; 2005 Jun; 56(5):1314-28. PubMed ID: 15882423
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nutrient-regulated proteolysis of MrpC halts expression of genes important for commitment to sporulation during Myxococcus xanthus development.
    Rajagopalan R; Kroos L
    J Bacteriol; 2014 Aug; 196(15):2736-47. PubMed ID: 24837289
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulations governing the multicellular lifestyle of Myxococcus xanthus.
    Mercier R; Mignot T
    Curr Opin Microbiol; 2016 Dec; 34():104-110. PubMed ID: 27648756
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An adenylyl cyclase, CyaA, of Myxococcus xanthus functions in signal transduction during osmotic stress.
    Kimura Y; Mishima Y; Nakano H; Takegawa K
    J Bacteriol; 2002 Jul; 184(13):3578-85. PubMed ID: 12057952
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly Signal-Responsive Gene Regulatory Network Governing Myxococcus Development.
    Kroos L
    Trends Genet; 2017 Jan; 33(1):3-15. PubMed ID: 27916428
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The act operon controls the level and time of C-signal production for Myxococcus xanthus development.
    Gronewold TM; Kaiser D
    Mol Microbiol; 2001 May; 40(3):744-56. PubMed ID: 11359579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.