BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 22753307)

  • 1. Sustainable production of syngas from biomass-derived glycerol by steam reforming over highly stable Ni/SiC.
    Kim SM; Woo SI
    ChemSusChem; 2012 Aug; 5(8):1513-22. PubMed ID: 22753307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renewable H2 from glycerol steam reforming: effect of La2O3 and CeO2 addition to Pt/Al2O3 catalysts.
    Montini T; Singh R; Das P; Lorenzut B; Bertero N; Riello P; Benedetti A; Giambastiani G; Bianchini C; Zinoviev S; Miertus S; Fornasiero P
    ChemSusChem; 2010 May; 3(5):619-28. PubMed ID: 20422673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Syngas production by two-stage method of biomass catalytic pyrolysis and gasification.
    Xie Q; Kong S; Liu Y; Zeng H
    Bioresour Technol; 2012 Apr; 110():603-9. PubMed ID: 22342084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts.
    Park HJ; Park SH; Sohn JM; Park J; Jeon JK; Kim SS; Park YK
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S101-3. PubMed ID: 19369069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steam reforming of biomass tar producing H2-rich gases over Ni/MgOx/CaO1-x catalyst.
    Li C; Hirabayashi D; Suzuki K
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S97-S100. PubMed ID: 19369062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autothermal catalytic partial oxidation of glycerol to syngas and to non-equilibrium products.
    Rennard DC; Kruger JS; Schmidt LD
    ChemSusChem; 2009; 2(1):89-98. PubMed ID: 19156694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen production by sorption-enhanced steam reforming of glycerol.
    Dou B; Dupont V; Rickett G; Blakeman N; Williams PT; Chen H; Ding Y; Ghadiri M
    Bioresour Technol; 2009 Jul; 100(14):3540-7. PubMed ID: 19318245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gasification and catalytic reforming of corn straw in closed-loop reactor.
    Hu J; Li D; Lee DJ; Zhang Q
    Bioresour Technol; 2019 Jun; 282():530-533. PubMed ID: 30885664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of preparation method on the performance of Ni/Al(2)O(3) catalysts for hydrogen production by bio-oil steam reforming.
    Li X; Wang S; Cai Q; Zhu L; Yin Q; Luo Z
    Appl Biochem Biotechnol; 2012 Sep; 168(1):10-20. PubMed ID: 21562805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steam plasmatron gasification of distillers grains residue from ethanol production.
    Shie JL; Tsou FJ; Lin KL
    Bioresour Technol; 2010 Jul; 101(14):5571-7. PubMed ID: 20163957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regenerability of hydrotalcite-derived nickel-iron alloy nanoparticles for syngas production from biomass tar.
    Li D; Koike M; Wang L; Nakagawa Y; Xu Y; Tomishige K
    ChemSusChem; 2014 Feb; 7(2):510-22. PubMed ID: 24376075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast microwave-assisted catalytic gasification of biomass for syngas production and tar removal.
    Xie Q; Borges FC; Cheng Y; Wan Y; Li Y; Lin X; Liu Y; Hussain F; Chen P; Ruan R
    Bioresour Technol; 2014 Mar; 156():291-6. PubMed ID: 24508907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction.
    Pati RK; Lee IC; Hou S; Akhuemonkhan O; Gaskell KJ; Wang Q; Frenkel AI; Chu D; Salamanca-Riba LG; Ehrman SH
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2624-35. PubMed ID: 20356136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycerol Steam Reforming Over Ni-Fe-Ce/Al2O3 Catalyst: Effect of Cerium.
    Go GS; Go YJ; Lee HJ; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1855-8. PubMed ID: 27433687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High efficient conversion of CO2-rich bio-syngas to CO-rich bio-syngas using biomass char: a useful approach for production of bio-methanol from bio-oil.
    Xu Y; Ye TQ; Qiu SB; Ning S; Gong FY; Liu Y; Li QX
    Bioresour Technol; 2011 May; 102(10):6239-45. PubMed ID: 21392976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly active and coke-resistant steam reforming catalyst comprising uniform nickel-iron alloy nanoparticles.
    Koike M; Li D; Nakagawa Y; Tomishige K
    ChemSusChem; 2012 Dec; 5(12):2312-4. PubMed ID: 23135797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deactivation mechanisms of Ni-based tar reforming catalysts as monitored by X-ray absorption spectroscopy.
    Yung MM; Kuhn JN
    Langmuir; 2010 Nov; 26(21):16589-94. PubMed ID: 20586431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable hydrogen production from ethanol through steam reforming reaction over nickel-containing smectite-derived catalyst.
    Yoshida H; Yamaoka R; Arai M
    Int J Mol Sci; 2014 Dec; 16(1):350-62. PubMed ID: 25547495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.