These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 22753307)
101. In situ Raman and pulse reaction study on the partial oxidation of methane to synthesis gas over a Pt/Al2O3 catalyst. Wang ML; Zheng HZ; Li JM; Weng WZ; Xia WS; Huang CJ; Wan HL Chem Asian J; 2011 Feb; 6(2):580-9. PubMed ID: 21254432 [TBL] [Abstract][Full Text] [Related]
102. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Cortright RD; Davda RR; Dumesic JA Nature; 2002 Aug; 418(6901):964-7. PubMed ID: 12198544 [TBL] [Abstract][Full Text] [Related]
104. Kinetic model for supercritical water gasification of algae. Guan Q; Wei C; Savage PE Phys Chem Chem Phys; 2012 Mar; 14(9):3140-7. PubMed ID: 22286322 [TBL] [Abstract][Full Text] [Related]
105. The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming. Zhong Z; Ang H; Choong C; Chen L; Huang L; Lin J Phys Chem Chem Phys; 2009 Feb; 11(5):872-80. PubMed ID: 19290335 [TBL] [Abstract][Full Text] [Related]
106. Direct observation of triple ions in aqueous solutions of nickel(II) sulfate: a molecular link between the gas phase and bulk behavior. Schröder D; Duchácková L; Tarábek J; Karwowska M; Fijalkowski KJ; Oncák M; Slavícek P J Am Chem Soc; 2011 Mar; 133(8):2444-51. PubMed ID: 21291264 [TBL] [Abstract][Full Text] [Related]
107. Production of hydrogen using nanocrystalline protein-templated catalysts on m13 phage. Neltner B; Peddie B; Xu A; Doenlen W; Durand K; Yun DS; Speakman S; Peterson A; Belcher A ACS Nano; 2010 Jun; 4(6):3227-35. PubMed ID: 20527795 [TBL] [Abstract][Full Text] [Related]
108. Ni/SiO2 promoted growth of carbon nanofibers from chlorobenzene: characterization of the active metal sites. Keane MA; Jacobs G; Patterson PM J Colloid Interface Sci; 2006 Oct; 302(2):576-88. PubMed ID: 16860817 [TBL] [Abstract][Full Text] [Related]
109. A nanodiamond/CNT-SiC monolith as a novel metal free catalyst for ethylbenzene direct dehydrogenation to styrene. Liu H; Diao J; Wang Q; Gu S; Chen T; Miao C; Yang W; Su D Chem Commun (Camb); 2014 Jul; 50(58):7810-2. PubMed ID: 24905905 [TBL] [Abstract][Full Text] [Related]
110. Hydrothermal deoxygenation of triglycerides over Pd/C aided by in situ hydrogen production from glycerol reforming. Hollak SA; Ariëns MA; de Jong KP; van Es DS ChemSusChem; 2014 Apr; 7(4):1057-62. PubMed ID: 24596129 [TBL] [Abstract][Full Text] [Related]
111. Thermal decomposition of commercial silicone oil to produce high yield high surface area SiC nanorods. Pol VG; Pol SV; Gedanken A; Lim SH; Zhong Z; Lin J J Phys Chem B; 2006 Jun; 110(23):11237-40. PubMed ID: 16771390 [TBL] [Abstract][Full Text] [Related]
112. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry. Haibach MC; Kundu S; Brookhart M; Goldman AS Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036 [TBL] [Abstract][Full Text] [Related]
113. Hierarchical copper-decorated nickel nanocatalysts supported on La2O3 for low-temperature steam reforming of ethanol. Liu JY; Su WN; Rick J; Yang SC; Cheng JH; Pan CJ; Lee JF; Hwang BJ ChemSusChem; 2014 Feb; 7(2):570-6. PubMed ID: 24307476 [TBL] [Abstract][Full Text] [Related]
114. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-Mordenite and Cu/ZnO catalysts. Li X; San X; Zhang Y; Ichii T; Meng M; Tan Y; Tsubaki N ChemSusChem; 2010 Oct; 3(10):1192-9. PubMed ID: 20715046 [TBL] [Abstract][Full Text] [Related]
115. Critical assessment of plasma tar reforming during biomass gasification: A review on advancement in plasma technology. Gao N; Milandile MH; Quan C; Rundong L J Hazard Mater; 2022 Jan; 421():126764. PubMed ID: 34358972 [TBL] [Abstract][Full Text] [Related]
116. Tar steam reforming for synthesis gas production over Ni-based on ceria/zirconia and La Khajonvittayakul C; Tongnan V; Namo N; Phonbubpha C; Laosiripojana N; Hartley M; Hartley UW Chemosphere; 2021 Aug; 277():130280. PubMed ID: 33784554 [TBL] [Abstract][Full Text] [Related]
117. Efficient utilization of greenhouse gas in a gas-to-liquids process combined with carbon dioxide reforming of methane. Ha KS; Bae JW; Woo KJ; Jun KW Environ Sci Technol; 2010 Feb; 44(4):1412-7. PubMed ID: 20078033 [TBL] [Abstract][Full Text] [Related]
118. The synergistic mechanism between coke depositions and gas for H Xu D; Xiong Y; Zhang S; Su Y Waste Manag; 2021 Feb; 121():23-32. PubMed ID: 33341691 [TBL] [Abstract][Full Text] [Related]
119. High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst. Broda M; Manovic V; Imtiaz Q; Kierzkowska AM; Anthony EJ; Müller CR Environ Sci Technol; 2013 Jun; 47(11):6007-14. PubMed ID: 23675760 [TBL] [Abstract][Full Text] [Related]
120. Co-processing methane in high temperature steam gasification of biomass. Palumbo AW; Jorgensen EL; Sorli JC; Weimer AW Bioresour Technol; 2013 Jan; 128():553-9. PubMed ID: 23208181 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]