These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22753339)

  • 1. The clinical characteristics of spinocerebellar ataxia 36: a study of 2121 Japanese ataxia patients.
    Sugihara K; Maruyama H; Morino H; Miyamoto R; Ueno H; Matsumoto M; Kaji R; Kitaguchi H; Yukitake M; Higashi Y; Nishinaka K; Oda M; Izumi Y; Kawakami H
    Mov Disord; 2012 Aug; 27(9):1158-63. PubMed ID: 22753339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 'Costa da Morte' ataxia is spinocerebellar ataxia 36: clinical and genetic characterization.
    García-Murias M; Quintáns B; Arias M; Seixas AI; Cacheiro P; Tarrío R; Pardo J; Millán MJ; Arias-Rivas S; Blanco-Arias P; Dapena D; Moreira R; Rodríguez-Trelles F; Sequeiros J; Carracedo A; Silveira I; Sobrido MJ
    Brain; 2012 May; 135(Pt 5):1423-35. PubMed ID: 22492559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Spinocerebellar ataxia type 36 (nicknamed Asidan)].
    Abe K; Ikeda Y
    Brain Nerve; 2012 Aug; 64(8):937-41. PubMed ID: 22868885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinocerebellar ataxia type 36 exists in diverse populations and can be caused by a short hexanucleotide GGCCTG repeat expansion.
    Obayashi M; Stevanin G; Synofzik M; Monin ML; Duyckaerts C; Sato N; Streichenberger N; Vighetto A; Desestret V; Tesson C; Wichmann HE; Illig T; Huttenlocher J; Kita Y; Izumi Y; Mizusawa H; Schöls L; Klopstock T; Brice A; Ishikawa K; Dürr A
    J Neurol Neurosurg Psychiatry; 2015 Sep; 86(9):986-95. PubMed ID: 25476002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds.
    Tang B; Liu C; Shen L; Dai H; Pan Q; Jing L; Ouyang S; Xia J
    Arch Neurol; 2000 Apr; 57(4):540-4. PubMed ID: 10768629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical features of SCA36: a novel spinocerebellar ataxia with motor neuron involvement (Asidan).
    Ikeda Y; Ohta Y; Kobayashi H; Okamoto M; Takamatsu K; Ota T; Manabe Y; Okamoto K; Koizumi A; Abe K
    Neurology; 2012 Jul; 79(4):333-41. PubMed ID: 22744658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinocerebellar ataxia type 10: common haplotype and disease progression rate in Peru and Brazil.
    Gheno TC; Furtado GV; Saute JAM; Donis KC; Fontanari AMV; Emmel VE; Pedroso JL; Barsottini O; Godeiro-Junior C; van der Linden H; Ternes Pereira E; Cintra VP; Marques W; de Castilhos RM; Alonso I; Sequeiros J; Cornejo-Olivas M; Mazzetti P; Leotti VB; Jardim LB; Saraiva-Pereira ML;
    Eur J Neurol; 2017 Jul; 24(7):892-e36. PubMed ID: 28560845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Mechanisms and Therapeutic Strategies in Spinocerebellar Ataxia Type 7.
    Karam A; Trottier Y
    Adv Exp Med Biol; 2018; 1049():197-218. PubMed ID: 29427104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinocerebellar ataxia 36 (SCA36): «Costa da Morte ataxia».
    Arias M; García-Murias M; Sobrido MJ
    Neurologia; 2017; 32(6):386-393. PubMed ID: 25593102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and clinical study of spinocerebellar ataxia type 7 in Chinese kindreds.
    Gu W; Wang Y; Liu X; Zhou B; Zhou Y; Wang G
    Arch Neurol; 2000 Oct; 57(10):1513-8. PubMed ID: 11030806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinocerebellar ataxia type 4 (SCA4): Initial pathoanatomical study reveals widespread cerebellar and brainstem degeneration.
    Hellenbroich Y; Gierga K; Reusche E; Schwinger E; Deller T; de Vos RA; Zühlke C; Rüb U
    J Neural Transm (Vienna); 2006 Jul; 113(7):829-43. PubMed ID: 16362839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SCA15 due to large ITPR1 deletions in a cohort of 333 white families with dominant ataxia.
    Marelli C; van de Leemput J; Johnson JO; Tison F; Thauvin-Robinet C; Picard F; Tranchant C; Hernandez DG; Huttin B; Boulliat J; Sangla I; Marescaux C; Brique S; Dollfus H; Arepalli S; Benatru I; Ollagnon E; Forlani S; Hardy J; Stevanin G; Dürr A; Singleton A; Brice A
    Arch Neurol; 2011 May; 68(5):637-43. PubMed ID: 21555639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and clinical analysis of spinocerebellar ataxia type 36 in Mainland China.
    Zeng S; Zeng J; He M; Zeng X; Zhou Y; Liu Z; Xia K; Pan Q; Jiang H; Shen L; Yan X; Tang B; Wang J
    Clin Genet; 2016 Aug; 90(2):141-8. PubMed ID: 26661328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinocerebellar ataxia type 1 in China: molecular analysis and genotype-phenotype correlation in 5 families.
    Zhou YX; Qiao WH; Gu WH; Xie H; Tang BS; Zhou LS; Yang BX; Takiyama Y; Tsuji S; He HY; Deng CX; Goldfarb LG; Wang GX
    Arch Neurol; 2001 May; 58(5):789-94. PubMed ID: 11346374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two young sisters with spinocerebellar ataxia type 2 showing different clinical progression of disease.
    Yiş U; Dirik E; Kurul SH; Eken AG; Başak AN
    Cerebellum; 2009 Jun; 8(2):127-9. PubMed ID: 19023636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes.
    Tezenas du Montcel S; Durr A; Bauer P; Figueroa KP; Ichikawa Y; Brussino A; Forlani S; Rakowicz M; Schöls L; Mariotti C; van de Warrenburg BP; Orsi L; Giunti P; Filla A; Szymanski S; Klockgether T; Berciano J; Pandolfo M; Boesch S; Melegh B; Timmann D; Mandich P; Camuzat A; ; ; Goto J; Ashizawa T; Cazeneuve C; Tsuji S; Pulst SM; Brusco A; Riess O; Brice A; Stevanin G
    Brain; 2014 Sep; 137(Pt 9):2444-55. PubMed ID: 24972706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families.
    Brusco A; Gellera C; Cagnoli C; Saluto A; Castucci A; Michielotto C; Fetoni V; Mariotti C; Migone N; Di Donato S; Taroni F
    Arch Neurol; 2004 May; 61(5):727-33. PubMed ID: 15148151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement.
    Kobayashi H; Abe K; Matsuura T; Ikeda Y; Hitomi T; Akechi Y; Habu T; Liu W; Okuda H; Koizumi A
    Am J Hum Genet; 2011 Jul; 89(1):121-30. PubMed ID: 21683323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinocerebellar ataxia type 15.
    Gardner RJ; Knight MA; Hara K; Tsuji S; Forrest SM; Storey E
    Cerebellum; 2005; 4(1):47-50. PubMed ID: 15895559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical and neuroradiological features of spinocerebellar ataxia 38 (SCA38).
    Borroni B; Di Gregorio E; Orsi L; Vaula G; Costanzi C; Tempia F; Mitro N; Caruso D; Manes M; Pinessi L; Padovani A; Brusco A; Boccone L
    Parkinsonism Relat Disord; 2016 Jul; 28():80-6. PubMed ID: 27143115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.