BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 22753390)

  • 1. Investigating the use of column inserts to achieve better chromatographic bed support.
    Lan T; Gerontas S; Smith GR; Langdon J; Ward JM; Titchener-Hooker NJ
    Biotechnol Prog; 2012; 28(5):1285-91. PubMed ID: 22753390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of agarose-nickel nanoporous composite particles customized for liquid expanded bed adsorption.
    Asghari F; Jahanshahi M; Ghoreyshi AA
    J Chromatogr A; 2012 Jun; 1242():35-42. PubMed ID: 22564699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and evaluation of low-cost agarose-zinc nanoporous composite matrix: influence of adsorbent density and size distribution on the performance of expanded beds.
    Asghari F; Jahanshahi M
    J Chromatogr A; 2012 Sep; 1257():89-97. PubMed ID: 22920304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of scale-down effects on the hydrodynamics of expanded bed adsorption columns.
    Fenneteau F; Aomari H; Chahal P; Legros R
    Biotechnol Bioeng; 2003 Mar; 81(7):790-9. PubMed ID: 12557312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive modeling of protein adsorption along the bed height by taking into account the axial nonuniform liquid dispersion and particle classification in expanded beds.
    Yun J; Lin DQ; Yao SJ
    J Chromatogr A; 2005 Nov; 1095(1-2):16-26. PubMed ID: 16275279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and experimental impact of the bed aspect ratio on the axial dispersion coefficient of columns packed with 2.5 μm particles.
    Gritti F; Guiochon G
    J Chromatogr A; 2012 Nov; 1262():107-21. PubMed ID: 23010248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suitability of commercial hydrophobic interaction sorbents for temperature-controlled protein liquid chromatography under low salt conditions.
    Müller TK; Franzreb M
    J Chromatogr A; 2012 Oct; 1260():88-96. PubMed ID: 22954746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a robust model of packing and scale-up for chromatographic beds. 1. Mechanical compression.
    Keener RN; Maneval JE; Fernandez EJ
    Biotechnol Prog; 2004; 20(4):1146-58. PubMed ID: 15296442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of protein uptake within the adsorbent particle during packed bed chromatography.
    Hubbuch J; Linden T; Knieps E; Thömmes J; Kula MR
    Biotechnol Bioeng; 2002 Nov; 80(4):359-68. PubMed ID: 12325144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroscopic investigation of the transient hydrodynamic memory behavior of preparative packed chromatography beds.
    Hekmat D; Mornhinweg R; Bloch G; Sun Y; Jeanty P; Neubert M; Weuster-Botz D
    J Chromatogr A; 2011 Feb; 1218(7):944-50. PubMed ID: 21238971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between the efficiencies of columns packed with fully and partially porous C18-bonded silica materials.
    Gritti F; Cavazzini A; Marchetti N; Guiochon G
    J Chromatogr A; 2007 Jul; 1157(1-2):289-303. PubMed ID: 17543317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the effect of in-bed sampling on expanded bed adsorption.
    Bruce LJ; Chase HA
    Bioseparation; 1999; 8(1-5):77-83. PubMed ID: 10734559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An effective way to hydrophilize gigaporous polystyrene microspheres as rapid chromatographic separation media for proteins.
    Qu JB; Zhou WQ; Wei W; Su ZG; Ma GH
    Langmuir; 2008 Dec; 24(23):13646-52. PubMed ID: 18980344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatography modelling to describe protein adsorption at bead level.
    Gerontas S; Shapiro MS; Bracewell DG
    J Chromatogr A; 2013 Apr; 1284():44-52. PubMed ID: 23433886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Technique and application for packing preparative liquid chromatographic column by dynamic axial compression].
    Han J; Wei W; Chang H; Wang H
    Se Pu; 2004 Jul; 22(4):403-7. PubMed ID: 15709420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of superporous agarose beads for protein adsorption: effect of CaCO3 granules content.
    Du KF; Bai S; Dong XY; Sun Y
    J Chromatogr A; 2010 Sep; 1217(37):5808-16. PubMed ID: 20691973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of the axial and radial temperature profiles of a chromatographic column. Influence of thermal insulation on column efficiency.
    Gritti F; Guiochon G
    J Chromatogr A; 2007 Jan; 1138(1-2):141-57. PubMed ID: 17141792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous ceramic/agarose composite adsorbents for fast protein liquid chromatography.
    Xia H; Jin X; Wu P; Zheng Z
    J Chromatogr A; 2012 Feb; 1223():126-30. PubMed ID: 22226554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frontal chromatography of proteins. Effect of axial dispersion on column performance.
    Heeter GA; Liapis AI
    J Chromatogr A; 1998 Feb; 796(1):157-64. PubMed ID: 9513289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.