BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 22753414)

  • 1. Proteomic analysis of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor complexes.
    Kang MG; Nuriya M; Guo Y; Martindale KD; Lee DZ; Huganir RL
    J Biol Chem; 2012 Aug; 287(34):28632-45. PubMed ID: 22753414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction proteomics reveals brain region-specific AMPA receptor complexes.
    Chen N; Pandya NJ; Koopmans F; Castelo-Székelv V; van der Schors RC; Smit AB; Li KW
    J Proteome Res; 2014 Dec; 13(12):5695-706. PubMed ID: 25337787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction proteomics of the AMPA receptor: towards identification of receptor sub-complexes.
    Li KW; Chen N; Smit AB
    Amino Acids; 2013 May; 44(5):1247-51. PubMed ID: 23344883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic plasticity, AMPA-R trafficking, and Ras-MAPK signaling.
    Gu Y; Stornetta RL
    Acta Pharmacol Sin; 2007 Jul; 28(7):928-36. PubMed ID: 17588327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of an interactome for long-form AMPA receptor subunits.
    Santos SD; Manadas B; Duarte CB; Carvalho AL
    J Proteome Res; 2010 Apr; 9(4):1670-82. PubMed ID: 20131911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of AMPA receptors in synaptic plasticity.
    Sprengel R
    Cell Tissue Res; 2006 Nov; 326(2):447-55. PubMed ID: 16896950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and different conformational states of native AMPA receptor complexes.
    Nakagawa T; Cheng Y; Ramm E; Sheng M; Walz T
    Nature; 2005 Feb; 433(7025):545-9. PubMed ID: 15690046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMPA Receptors as Therapeutic Targets for Neurological Disorders.
    Lee K; Goodman L; Fourie C; Schenk S; Leitch B; Montgomery JM
    Adv Protein Chem Struct Biol; 2016; 103():203-61. PubMed ID: 26920691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel role for calcium-independent phospholipase A in alpha-amino-3-hydroxy-5-methylisoxazole-propionate receptor regulation during long-term potentiation.
    Martel MA; Patenaude C; Ménard C; Alaux S; Cummings BS; Massicotte G
    Eur J Neurosci; 2006 Jan; 23(2):505-13. PubMed ID: 16420457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinase Cgamma is a signaling molecule required for the developmental speeding of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor kinetics.
    Patten SA; Roy B; Cunningham ME; Stafford JL; Ali DW
    Eur J Neurosci; 2010 May; 31(9):1561-73. PubMed ID: 20525069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor-mediated stimulation of glutamate and GABA release in the rat striatum in vivo: a dual-label microdialysis study.
    Patel DR; Young AM; Croucher MJ
    Neuroscience; 2001; 102(1):101-11. PubMed ID: 11226673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurokinin release in the rat nucleus of the solitary tract via NMDA and AMPA receptors.
    Colin I; Blondeau C; Baude A
    Neuroscience; 2002; 115(4):1023-33. PubMed ID: 12453476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C-terminal domains of transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor regulatory proteins not only facilitate trafficking but are major modulators of AMPA receptor function.
    Sager C; Terhag J; Kott S; Hollmann M
    J Biol Chem; 2009 Nov; 284(47):32413-24. PubMed ID: 19773551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auxiliary subunits provide new insights into regulation of AMPA receptor trafficking.
    Sumioka A
    J Biochem; 2013 Apr; 153(4):331-7. PubMed ID: 23426437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term effects of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate and 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2,3-dione in the rat basal ganglia: calcification, changes in glutamate receptors and glial reactions.
    Petegnief V; Saura J; Dewar D; Cummins DJ; Dragunow M; Mahy N
    Neuroscience; 1999; 94(1):105-15. PubMed ID: 10613501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biochemistry, ultrastructure, and subunit assembly mechanism of AMPA receptors.
    Nakagawa T
    Mol Neurobiol; 2010 Dec; 42(3):161-84. PubMed ID: 21080238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serine phosphorylation of ephrinB2 regulates trafficking of synaptic AMPA receptors.
    Essmann CL; Martinez E; Geiger JC; Zimmer M; Traut MH; Stein V; Klein R; Acker-Palmer A
    Nat Neurosci; 2008 Sep; 11(9):1035-43. PubMed ID: 19160501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+/calmodulin-dependent protein kinase II binds to and phosphorylates a specific SAP97 splice variant to disrupt association with AKAP79/150 and modulate alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPAR) activity.
    Nikandrova YA; Jiao Y; Baucum AJ; Tavalin SJ; Colbran RJ
    J Biol Chem; 2010 Jan; 285(2):923-34. PubMed ID: 19858198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of AMPA receptors: mechanisms and synaptic plasticity.
    Wang JQ; Arora A; Yang L; Parelkar NK; Zhang G; Liu X; Choe ES; Mao L
    Mol Neurobiol; 2005 Dec; 32(3):237-49. PubMed ID: 16385140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopaminergic enhancement of excitatory synaptic transmission in layer II entorhinal neurons is dependent on D₁-like receptor-mediated signaling.
    Glovaci I; Caruana DA; Chapman CA
    Neuroscience; 2014 Jan; 258():74-83. PubMed ID: 24220689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.