BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 22753820)

  • 1. Microscopic quantum coherence in a photosynthetic-light-harvesting antenna.
    Dawlaty JM; Ishizaki A; De AK; Fleming GR
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3672-91. PubMed ID: 22753820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the interpretation of quantum coherent beats observed in two-dimensional electronic spectra of photosynthetic light harvesting complexes.
    Ishizaki A; Fleming GR
    J Phys Chem B; 2011 May; 115(19):6227-33. PubMed ID: 21488648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measures and implications of electronic coherence in photosynthetic light-harvesting.
    Smyth C; Fassioli F; Scholes GD
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3728-49. PubMed ID: 22753823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherence and decoherence in biological systems: principles of noise-assisted transport and the origin of long-lived coherences.
    Chin AW; Huelga SF; Plenio MB
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3638-57. PubMed ID: 22753818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peak shape analysis of diagonal and off-diagonal features in the two-dimensional electronic spectra of the Fenna-Matthews-Olson complex.
    Hayes D; Engel GS
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3692-708. PubMed ID: 22753821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical description of quantum effects in multi-chromophoric aggregates.
    Zimanyi EN; Silbey RJ
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3620-37. PubMed ID: 22753817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhomogeneous dephasing masks coherence lifetimes in ensemble measurements.
    Pelzer KM; Griffin GB; Gray SK; Engel GS
    J Chem Phys; 2012 Apr; 136(16):164508. PubMed ID: 22559497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer.
    Ishizaki A; Calhoun TR; Schlau-Cohen GS; Fleming GR
    Phys Chem Chem Phys; 2010 Jul; 12(27):7319-37. PubMed ID: 20544102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A critical view on transport and entanglement in models of photosynthesis.
    Tiersch M; Popescu S; Briegel HJ
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3771-86. PubMed ID: 22753825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences.
    Fidler AF; Harel E; Long PD; Engel GS
    J Phys Chem A; 2012 Jan; 116(1):282-9. PubMed ID: 22191993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes.
    Hildner R; Brinks D; Nieder JB; Cogdell RJ; van Hulst NF
    Science; 2013 Jun; 340(6139):1448-51. PubMed ID: 23788794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exciton diffusion length in complex quantum systems: the effects of disorder and environmental fluctuations on symmetry-enhanced supertransfer.
    Abasto DF; Mohseni M; Lloyd S; Zanardi P
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3750-70. PubMed ID: 22753824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems.
    Huo P; Coker DF
    J Chem Phys; 2012 Mar; 136(11):115102. PubMed ID: 22443796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unified treatment of coherent and incoherent electronic energy transfer dynamics using classical electrodynamics.
    Zimanyi EN; Silbey RJ
    J Chem Phys; 2010 Oct; 133(14):144107. PubMed ID: 20949987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical origins and models of energy transfer in photosynthetic light-harvesting.
    Novoderezhkin VI; van Grondelle R
    Phys Chem Chem Phys; 2010 Jul; 12(27):7352-65. PubMed ID: 20532406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.
    Engel GS; Calhoun TR; Read EL; Ahn TK; Mancal T; Cheng YC; Blankenship RE; Fleming GR
    Nature; 2007 Apr; 446(7137):782-6. PubMed ID: 17429397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox conditions correlated with vibronic coupling modulate quantum beats in photosynthetic pigment-protein complexes.
    Higgins JS; Allodi MA; Lloyd LT; Otto JP; Sohail SH; Saer RG; Wood RE; Massey SC; Ting PC; Blankenship RE; Engel GS
    Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34845027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robustness, efficiency, and optimality in the Fenna-Matthews-Olson photosynthetic pigment-protein complex.
    Baker LA; Habershon S
    J Chem Phys; 2015 Sep; 143(10):105101. PubMed ID: 26374060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic light harvesting: excitons and coherence.
    Fassioli F; Dinshaw R; Arpin PC; Scholes GD
    J R Soc Interface; 2014 Mar; 11(92):20130901. PubMed ID: 24352671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis.
    Turner DB; Dinshaw R; Lee KK; Belsley MS; Wilk KE; Curmi PM; Scholes GD
    Phys Chem Chem Phys; 2012 Apr; 14(14):4857-74. PubMed ID: 22374579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.