These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 22753824)
1. Exciton diffusion length in complex quantum systems: the effects of disorder and environmental fluctuations on symmetry-enhanced supertransfer. Abasto DF; Mohseni M; Lloyd S; Zanardi P Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3750-70. PubMed ID: 22753824 [TBL] [Abstract][Full Text] [Related]
2. Theoretical description of quantum effects in multi-chromophoric aggregates. Zimanyi EN; Silbey RJ Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3620-37. PubMed ID: 22753817 [TBL] [Abstract][Full Text] [Related]
3. Microscopic quantum coherence in a photosynthetic-light-harvesting antenna. Dawlaty JM; Ishizaki A; De AK; Fleming GR Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3672-91. PubMed ID: 22753820 [TBL] [Abstract][Full Text] [Related]
4. Measures and implications of electronic coherence in photosynthetic light-harvesting. Smyth C; Fassioli F; Scholes GD Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3728-49. PubMed ID: 22753823 [TBL] [Abstract][Full Text] [Related]
5. Peak shape analysis of diagonal and off-diagonal features in the two-dimensional electronic spectra of the Fenna-Matthews-Olson complex. Hayes D; Engel GS Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3692-708. PubMed ID: 22753821 [TBL] [Abstract][Full Text] [Related]
6. Coherence and decoherence in biological systems: principles of noise-assisted transport and the origin of long-lived coherences. Chin AW; Huelga SF; Plenio MB Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3638-57. PubMed ID: 22753818 [TBL] [Abstract][Full Text] [Related]
7. A critical view on transport and entanglement in models of photosynthesis. Tiersch M; Popescu S; Briegel HJ Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3771-86. PubMed ID: 22753825 [TBL] [Abstract][Full Text] [Related]
8. Unified treatment of coherent and incoherent electronic energy transfer dynamics using classical electrodynamics. Zimanyi EN; Silbey RJ J Chem Phys; 2010 Oct; 133(14):144107. PubMed ID: 20949987 [TBL] [Abstract][Full Text] [Related]
9. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems. Huo P; Coker DF J Chem Phys; 2012 Mar; 136(11):115102. PubMed ID: 22443796 [TBL] [Abstract][Full Text] [Related]
10. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Ishizaki A; Calhoun TR; Schlau-Cohen GS; Fleming GR Phys Chem Chem Phys; 2010 Jul; 12(27):7319-37. PubMed ID: 20544102 [TBL] [Abstract][Full Text] [Related]
11. Coherent transport and energy flow patterns in photosynthesis under incoherent excitation. Pelzer KM; Can T; Gray SK; Morr DK; Engel GS J Phys Chem B; 2014 Mar; 118(10):2693-702. PubMed ID: 24498866 [TBL] [Abstract][Full Text] [Related]
12. Ultrafast exciton-exciton coherent transfer in molecular aggregates and its application to light-harvesting systems. Hyeon-Deuk K; Tanimura Y; Cho M J Chem Phys; 2007 Aug; 127(7):075101. PubMed ID: 17718632 [TBL] [Abstract][Full Text] [Related]
13. Assistance of molecular vibrations on coherent energy transfer in photosynthesis from the view of a quantum heat engine. Zhang Z; Wang J J Phys Chem B; 2015 Apr; 119(13):4662-7. PubMed ID: 25776946 [TBL] [Abstract][Full Text] [Related]
14. Physical origins and models of energy transfer in photosynthetic light-harvesting. Novoderezhkin VI; van Grondelle R Phys Chem Chem Phys; 2010 Jul; 12(27):7352-65. PubMed ID: 20532406 [TBL] [Abstract][Full Text] [Related]
16. Two-dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences. Fidler AF; Harel E; Long PD; Engel GS J Phys Chem A; 2012 Jan; 116(1):282-9. PubMed ID: 22191993 [TBL] [Abstract][Full Text] [Related]
17. Excitation energy transfer in a classical analogue of photosynthetic antennae. ManĨal T J Phys Chem B; 2013 Sep; 117(38):11282-91. PubMed ID: 23822554 [TBL] [Abstract][Full Text] [Related]
18. Learning from photosynthesis: how to use solar energy to make fuels. Cogdell RJ; Gardiner AT; Cronin L Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3819-26. PubMed ID: 22753828 [TBL] [Abstract][Full Text] [Related]