These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22754313)

  • 1. Early fixation of cobalt-chromium based alloy surgical implants to bone using a tissue-engineering approach.
    Ogawa M; Tohma Y; Ohgushi H; Takakura Y; Tanaka Y
    Int J Mol Sci; 2012; 13(5):5528-5541. PubMed ID: 22754313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osseointegration of surface-blasted implants made of titanium alloy and cobalt-chromium alloy in a rabbit intramedullary model.
    Jinno T; Goldberg VM; Davy D; Stevenson S
    J Biomed Mater Res; 1998 Oct; 42(1):20-9. PubMed ID: 9740003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium aluminate coated and uncoated free form fabricated CoCr implants: a comparative study in rabbit.
    Palmquist A; Jarmar T; Hermansson L; Emanuelsson L; Taylor A; Taylor M; Engqvist H; Thomsen P
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):122-7. PubMed ID: 19402147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Titanium Powder Coating Using Metal 3D Printing: A Novel Coating Technology for Cobalt-Chromium Alloy Implants.
    Kim SC; Jo WL; Kim YS; Kwon SY; Cho YS; Lim YW
    Tissue Eng Regen Med; 2019 Feb; 16(1):11-18. PubMed ID: 30815346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cobalt chromium alloy with immobilized BMP peptide for enhanced bone growth.
    Poh CK; Shi Z; Tan XW; Liang ZC; Foo XM; Tan HC; Neoh KG; Wang W
    J Orthop Res; 2011 Sep; 29(9):1424-30. PubMed ID: 21445991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration.
    Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H
    J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osseointegration of acellular and cellularized osteoconductive scaffolds: is tissue engineering using mesenchymal stem cells necessary for implant fixation?
    García-Gareta E; Hua J; Blunn GW
    J Biomed Mater Res A; 2015 Mar; 103(3):1067-76. PubMed ID: 24913035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model.
    Tortelli F; Tasso R; Loiacono F; Cancedda R
    Biomaterials; 2010 Jan; 31(2):242-9. PubMed ID: 19796807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of simulated microgravity by three-dimensional clinostat on bone tissue engineering.
    Nishikawa M; Ohgushi H; Tamai N; Osuga K; Uemura M; Yoshikawa H; Myoui A
    Cell Transplant; 2005; 14(10):829-35. PubMed ID: 16454357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of bone defects in rat radii with a composite of allogeneic adipose-derived stem cells and heterogeneous deproteinized bone.
    Liu J; Zhou P; Long Y; Huang C; Chen D
    Stem Cell Res Ther; 2018 Mar; 9(1):79. PubMed ID: 29587852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of micro-roughening of poly(ether ether ketone) on bone marrow derived stem cell and macrophage responses, and osseointegration.
    Sunarso ; Tsuchiya A; Fukuda N; Toita R; Tsuru K; Ishikawa K
    J Biomater Sci Polym Ed; 2018 Aug; 29(12):1375-1388. PubMed ID: 29661104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CoCr porous scaffolds manufactured via selective laser melting in orthopedics: Topographical, mechanical, and biological characterization.
    Caravaggi P; Liverani E; Leardini A; Fortunato A; Belvedere C; Baruffaldi F; Fini M; Parrilli A; Mattioli-Belmonte M; Tomesani L; Pagani S
    J Biomed Mater Res B Appl Biomater; 2019 Oct; 107(7):2343-2353. PubMed ID: 30689288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting.
    Shah FA; Omar O; Suska F; Snis A; Matic A; Emanuelsson L; Norlindh B; Lausmaa J; Thomsen P; Palmquist A
    Acta Biomater; 2016 May; 36():296-309. PubMed ID: 27000553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free form fabricated features on CoCr implants with and without hydroxyapatite coating in vivo: a comparative study of bone contact and bone growth induction.
    Grandfield K; Palmquist A; Gonçalves S; Taylor A; Taylor M; Emanuelsson L; Thomsen P; Engqvist H
    J Mater Sci Mater Med; 2011 Apr; 22(4):899-906. PubMed ID: 21305340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alveolar bone regeneration around immediate implants using an injectable nHAC/CSH loaded with autogenic blood-acquired mesenchymal progenitor cells: an experimental study in the dog mandible.
    Han X; Liu H; Wang D; Su F; Zhang Y; Zhou W; Li S; Yang R
    Clin Implant Dent Relat Res; 2013 Jun; 15(3):390-401. PubMed ID: 21745333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel porous Ti35Zr28Nb scaffolds fabricated by powder metallurgy with excellent osteointegration ability for bone-tissue engineering applications.
    Xu W; Tian J; Liu Z; Lu X; Hayat MD; Yan Y; Li Z; Qu X; Wen C
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110015. PubMed ID: 31546430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trunnion Failure of the Recalled Low Friction Ion Treatment Cobalt Chromium Alloy Femoral Head.
    Urish KL; Hamlin BR; Plakseychuk AY; Levison TJ; Higgs GB; Kurtz SM; DiGioia AM
    J Arthroplasty; 2017 Sep; 32(9):2857-2863. PubMed ID: 28478184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of topographical and chemical modified TiAl6V4 implant surfaces in a weight-bearing intramedullary femur model in rabbit.
    Bretschneider H; Mettelsiefen J; Rentsch C; Gelinsky M; Link HD; Günther KP; Lode A; Hofbauer C
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):1117-1128. PubMed ID: 31407488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early bone in-growth ability of alumina ceramic implants loaded with tissue-engineered bone.
    Tohma Y; Tanaka Y; Ohgushi H; Kawate K; Taniguchi A; Hayashi K; Isomoto S; Takakura Y
    J Orthop Res; 2006 Apr; 24(4):595-603. PubMed ID: 16514632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.